AMG4PSBLAS
User’s and Reference Guide

A guide for the Algebraic MultiGrid
Preconditioners Package based on PSBLAS

Pasqua D’Ambra
IAC-CNR, Italy

Fabio Durastante
University of Pisa and IAC-CNR

Salvatore Filippone
University of Rome Tor-Vergata and IAC-CNR

Software version: 1.0
April 12,2021

This page intentionally left blank

Abstract

AMG4PSBLAS (ALGEBRAIC MULTIGRID PRECONDITIONERS PACKAGE BASED ON
PSBLAS) is a package of parallel algebraic multilevel preconditioners included in the
PSCToolkit (Parallel Sparse Computation Toolkit) software framework. It is a progress
of a software development project started in 2007, named MLD2P4, which originally
implemented a multilevel version of some domain decomposition preconditioners of
additive-Schwarz type, and was based on a parallel decoupled version of the well
known smoothed aggregation method to generate the multilevel hierarchy of coarser
matrices. In the last years, within the context of the EU-H2020 EoCoE project (Energy
Oriented Center of Excellence), the package was extended for including new algorithms
and functionalities for the setup and application new AMG preconditioners with the
final aims of improving efficiency and scalability when tens of thousands cores are
used, and of boosting reliability in dealing with general symmetric positive definite
linear systems. Due to the significant number of changes and the increase in scope, we
decided to rename the package as AMG4PSBLAS.

AMG4PSBLAS has been designed to provide scalable and easy-to-use precondition-
ers in the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms)
computational framework and can be used in conjuction with the Krylov solvers avail-
able in this framework. Our package is based on a completely algebraic approach;
therefore users level interfaces assume that the system matrix and preconditioners are
represented as PSBLAS distributed sparse matrices. AMG4PSBLAS enables the user to
easily specify different features of an algebraic multilevel preconditioner, thus allowing
to experiment with different preconditioners for the problem and parallel computers at
hand.

The package employs object-oriented design techniques in Fortran 2003, with in-
terfaces to additional third party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU_Dist, which can be exploited in building multilevel preconditioners. The
parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm;
the inter-process communication is based on MPI and is managed mainly through
PSBLAS.

This guide provides a brief description of the functionalities and the user interface
of AMG4PSBLAS.

This page intentionally left blank

Contents

Abstract

1 General Overview
2 Code Distribution

3 Configuring and Building AMG4PSBLAS
3.1 Prerequisites
3.2 Optional third party libraries
3.3 Configurationoptions

34 Bugreporting
3.5 Exampleandtestprograms
4 Getting Started
41 Examples
42 GPUexample
5 User Interface
51 Methodinit e
52 Methodset e
53 Method hierarchy build,
54 Method smoothers build
55 Methodbuild
56 Methodapply
5.7 Method free e
58 Method descr e
59 Auxiliary Methods L Lo o
591 Method:dump
59.2 Method:clone
59.3 Method: sizeof
59.4 Method: allocatewrk
59.5 Method: free-wrk
6 Adding new smoother and solver objects to AMG4PSBLAS
7 Error Handling
A License
B Contributor Covenant Code of Conduct

References

11
13
16

18
19
20
33
34
35
36
37
38
38
38
39
39
39

41

43

44

47

50

This page intentionally left blank

1 GENERAL OVERVIEW 1

1 General Overview

The ALGEBRAIC MULTIGRID PRECONDITIONERS PACKAGE BASED ON PSBLAS (AMG-
4PSBLAS) provides parallel Algebraic MultiGrid (AMG) preconditioners (see, e.g.,
[5, 31]), to be used in the iterative solution of linear systems,

Ax = b, 1)

where A is a square, real or complex, sparse symmetric positive definite (s.p.d) matrix.

The preconditioners implemented in AMG4PSBLAS are obtained by combining 3
different types of AMG cycles with smoothers and coarsest-level solvers. Available
multigrid cycles include the V-, W-, and a version of a Krylov-type cycle (K-cycle) [5, 27];
they can be combined with Jacobi, hybrid forward/backward Gauss-Seidel, block-
Jacobi and additive Schwarz smoothers with various versions of local incomplete
factorizations and approximate inverses on the blocks. The Jacobi, block-Jacobi and
Gauss-Seidel smoothers are also available in the ¢; version [14].

An algebraic approach is used to generate a hierarchy of coarse-level matrices and
operators, without explicitly using any information on the geometry of the original
problem, e.g., the discretization of a PDE. To this end, two different coarsening strategies,
based on aggregation, are available:

e a decoupled version of the smoothed aggregation procedure proposed in [4, 33],
and already included in the previous versions of the package [7, 11];

e a coupled, parallel implementation of the Coarsening based on Compatible
Weighted Matching introduced in [12, 13] and described in detail in [14];

Either exact or approximate solvers can be used on the coarsest-level system. We
provide interfaces to various parallel and sequential sparse LU factorizations from
external packages, sequential native incomplete LU and approximate inverse factor-
izations, parallel weighted Jacobi, hybrid Gauss-Seidel, block-Jacobi solvers and calls
to preconditioned Krylov methods; all smoothers can be also exploited as one-level
preconditioners.

AMG4PSBLAS is written in Fortran 2003, following an object-oriented design
through the exploitation of features such as abstract data type creation, type extension,
functional overloading, and dynamic memory management. The parallel implementa-
tion is based on a Single Program Multiple Data (SPMD) paradigm. Single and double
precision implementations of AMG4PSBLAS are available for both the real and the
complex case, which can be used through a single interface.

AMG4PSBLAS has been designed to implement scalable and easy-to-use multilevel
preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational
framework [22, 21]. PSBLAS provides basic linear algebra operators and data man-
agement facilities for distributed sparse matrices, kernels for sequential incomplete
factorizations needed for the parallel block-Jacobi and additive Schwarz smoothers,
and parallel Krylov solvers which can be used with the AMG4PSBLAS preconditioners.
The choice of PSBLAS has been mainly motivated by the need of having a portable

2 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

and efficient software infrastructure implementing “de facto” standard parallel sparse
linear algebra kernels, to pursue goals such as performance, portability, modularity ed
extensibility in the development of the preconditioner package. On the other hand, the
implementation of AMG4PSBLAS, which was driven by the need to face the exascale
challenge, has led to some important revisions and extentions of the PSBLAS infras-
tructure. The inter-process comunication required by AMG4PSBLAS is encapsulated
in the PSBLAS routines; therefore, AMG4PSBLAS can be run on any parallel machine
where PSBLAS implementations are available. In the most recent version of PSBLAS
(release 3.7), a plug-in for GPU is included; it includes CUDA versions of main vector
operations and of sparse matrix-vector multiplication, so that Krylov methods coupled
with AMG4PSBLAS preconditioners relying on Jacobi and block-Jacobi smoothers with
sparse approximate inverses on the blocks can be efficiently executed on cluster of
GPUs.

AMG4PSBLAS has a layered and modular software architecture where three main
layers can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
upper one provides a uniform interface to all the preconditioners. This architecture al-
lows for different levels of use of the package: few black-box routines at the upper layer
allow all users to easily build and apply any preconditioner available in AMG4PSBLAS;
facilities are also available allowing expert users to extend the set of smoothers and
solvers for building new versions of the preconditioners (see Section 6).

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. The basics for building and applying the precon-
ditioners with the Krylov solvers implemented in PSBLAS are reported in Section 4,
where the Fortran codes of a few sample programs are also shown. A reference guide
for the user interface routines is provided in Section 5. Information on the extension of
the package through the addition of new smoothers and solvers is reported in Section 6.
The error handling mechanism used by the package is briefly described in Section 7.
The copyright terms concerning the distribution and modification of AMG4PSBLAS
are reported in Appendix A.

2 CODE DISTRIBUTION 3

2 Code Distribution

AMGA4PSBLAS is available from the web site
https:/ /psctoolkit.github.io/products/amg4psblas/

where contact points for further information can be also found.

The software is available under a modified BSD license, as specified in Appendix A;
please note that some of the optional third party libraries may be licensed under a
different and more stringent license, most notably the GPL, and this should be taken
into account when treating derived works.

The library defines a version string with the constant

amg_version_string_

whose current value is 1.0.

Contributors
e Pasqua D’Ambra, IAC-CNR, IT;
e Fabio Durastante, University of Pisa and IAC-CNR, IT;

e Salvatore Filippone, University of Rome Tor-Vergata and IAC-CNR, IT;

Citing AMG4PSBLAS

When use the library, please cite the following:

Q@article{DDF2021,
author = {D'Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatore}l,
title = {{{AMG Preconditioners for Linear Solvers towards Extreme Scalel}},
journal = {arXiv e-preprints},
eprint = {2006.16147v3},
archivePrefix = {arXiv},
year={2021}

}

@Misc{psctoolkit-web-page,
author = {D'Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatorel,
title = {{PSCToolkit} {W}eb pagel},
url = {https://psctoolkit.github.io/},
howpublished = {\url{https://psctoolkit.github.io/}},
year = {2021}

https://psctoolkit.github.io/products/amg4psblas/

4 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

3 Configuring and Building AMG4PSBLAS

In order to build AMG4PSBLAS it is necessary to set up a Makefile with appropriate
system-dependent variables; this is done by means of the configure script. The dis-
tribution also includes the autoconf and automake sources employed to generate the
script, but usually this is not needed to build the software.

AMG4PSBLAS is implemented almost entirely in Fortran 2003, with some interfaces
to external libraries in C; the Fortran compiler must support the Fortran 2003 standard
plus the extension MOLD= feature, which enhances the usability of ALLOCATE. Most
Fortran compilers provide this feature; in particular, this is supported by the GNU
Fortran compiler, for which we recommend to use at least version 4.8. The software
defines data types and interfaces for real and complex data, in both single and double
precision.

Building AMG4PSBLAS requires some base libraries (see Section 3.1); interfaces to
optional third-party libraries, which extend the functionalities of AMG4PSBLAS (see
Section 3.2), are also available. A number of Linux distributions (e.g., Ubuntu, Fedora,
CentOS) provide precompiled packages for the prerequisite and optional software. In
many cases these packages are split between a runtime part and a “developer” part; in
order to build AMG4PSBLAS you need both. A description of the base and optional
software used by AMG4PSBLAS is given in the next sections.

3.1 Prerequisites

The following base libraries are needed:

BLAS [17, 18, 25] Many vendors provide optimized versions of BLAS; if no vendor ver-
sion is available for a given platform, the ATLAS software (math-atlas.sourceforge
net) may be employed. The reference BLAS from Netlib (www.netlib.org/blas)
are meant to define the standard behaviour of the BLAS interface, so they are not
optimized for any particular platform, and should only be used as a last resort.
Note that BLAS computations form a relatively small part of the AMG4PSBLAS/-
PSBLAS; however they are critical when using preconditioners based on the
MUMPS, UMFPACK or SuperLU third party libraries. UMFPACK requires a full
LAPACK library; our experience is that configuring ATLAS for building full LA-
PACK does not always work in the expected way. Our advice is first to download
the LAPACK tarfile from www.netlib.org/lapack and install it independently of
ATLAS. In this case, you need to modify the OPTS and NOOPT definitions for
including -fPIC compilation option in the make.inc file of the LAPACK library.

MPI [24, 30] A version of MPI is available on most high-performance computing
systems.

PSBLAS [20, 22] Parallel Sparse BLAS (PSBLAS) is available from psctoolkit.github.io/
products/psblas/; version 3.7.0 (or later) is required. Indeed, all the prerequisites
listed so far are also prerequisites of PSBLAS.

http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.netlib.org/blas
http://www.netlib.org/lapack
https://psctoolkit.github.io/products/psblas/
https://psctoolkit.github.io/products/psblas/

3 CONFIGURING AND BUILDING AMG4PSBLAS 5

Please note that the four previous libraries must have Fortran interfaces compatible
with AMG4PSBLAS; usually this means that they should all be built with the same
compiler being used for AMG4PSBLAS.

If you want to use the PSBLAS support for NVIDIA GPUs, you will also need:

PSBLAS-EXT Parallel Sparse BLAS (PSBLAS) Extensions, available from psc-
toolkit.github.io/products/psblasext/; version 1.3.0 (or later).

SPGPU Sparse CUDA kernels for NVIDIA GPUs; available from GitHub, see also
psctoolkit.github.io/products/psblasext/.

See also Sec 4.2.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multilevel preconditioners may
change to reflect their presence.

UMFPACK [15] A sparse LU factorization package included in the SuiteSparse library,
available from faculty.cse.tamu.edu/davis/suitesparse.html; it provides se-
quential factorization and triangular system solution for double precision real and
complex data. We tested version 4.5.4 of SuiteSparse. Note that for configuring
SuiteSparse you should provide the right path to the BLAS and LAPACK libraries
in the SuiteSparse_config/SuiteSparse_config.mk file.

MUMPS [2] A sparse LU factorization package available from mumps . enseeiht. fr; it
provides sequential and parallel factorizations and triangular system solution for
single and double precision, real and complex data. We tested versions 4.10.0 and
5.0.1.

SuperLU [16] A sparse LU factorization package available from crd.1bl.gov/~xiaoye/
SuperLU/; it provides sequential factorization and triangular system solution for
single and double precision, real and complex data. We tested versions 4.3 and
5.0. If you installed BLAS from ATLAS, remember to define the BLASLIB variable
in the make.inc file.

SuperLU_Dist [26] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested versions 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering, available from glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview.

https://psctoolkit.github.io/products/psblasext/
https://psctoolkit.github.io/products/psblasext/
https://psctoolkit.github.io/products/psblasext/
faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr
crd.lbl.gov/~xiaoye/SuperLU/
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

6 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

3.3 Configuration options

In order to build AMGA4PSBLAS, the first step is to use the configure script in the main
directory to generate the necessary makefile.
As a minimal example consider the following;:

./configure --with-psblas=PSB-INSTALL-DIR

which assumes that the various MPI compilers and support libraries are available in the
standard directories on the system, and specifies only the PSBLAS install directory (note
that the latter directory must be specified with an absolute path). The full set of options
may be looked at by issuing the command ./configure --help, which produces:

“configure' configures AMG4PSBLAS 1.0.0 to adapt to many kinds of systems.
Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit
——help=short display options specific to this package
--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, ——quiet, --silent do not print “checking ...' messages
--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for “--cache-file=config.cache'

-n, ——no-create do not create output files
—--srcdir=DIR find the sources in DIR [configure dir or ~..']

Installation directories:

—--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/locall

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

By default, "make install' will install all the files in
*/usr/local/bin', ~/usr/local/lib' etc. You can specify

an installation prefix other than ~/usr/local' using ~--prefix',
for instance ~--prefix=$HOME'.

For better control, use the options below.
Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]
—--sbindir=DIR system admin executables [EPREFIX/sbin]

3 CONFIGURING AND BUILDING AMG4PSBLAS

—-libexecdir=DIR
—--sysconfdir=DIR
—-sharedstatedir=DIR

< [PREFIX/com]
—-localstatedir=DIR
—-1ibdir=DIR
—-includedir=DIR
—-oldincludedir=DIR
——-datarootdir=DIR

< [PREFIX/share]
—-datadir=DIR

< [DATAROOTDIR]
——-infodir=DIR
—-localedir=DIR
—-mandir=DIR
—--docdir=DIR
—-htmldir=DIR
—-dvidir=DIR
--pdfdir=DIR
--psdir=DIR

Program names:
—-—-program-prefix=PREFIX

< names
--program-suffix=SUFFIX

program executables [EPREFIX/libexec]
read-only single-machine data [PREFIX/etc]
modifiable architecture-independent data

modifiable single-machine data [PREFIX/var]
object code libraries [EPREFIX/1ib]

C header files [PREFIX/include]

C header files for non-gcc [/usr/include]
read-only arch.-independent data root

read-only architecture-independent data

info documentation [DATAROOTDIR/infol
locale-dependent data [DATAROOTDIR/locale]

man documentation [DATAROOTDIR/man]
documentation root [DATAROOTDIR/doc/amgépsblas]
html documentation [DOCDIR]

dvi documentation [DOCDIR]

pdf documentation [DOCDIR]

ps documentation [DOCDIR]

prepend PREFIX to installed program

append SUFFIX to installed program names

--program-transform-name=PROGRAM run sed PROGRAM on installed program

— names

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

—-disable-FEATURE

< --enable-FEATURE=no)
—-enable-FEATURE [=ARG]
——-enable-silent-rules
—-disable-silent-rules

do not include FEATURE (same as

include FEATURE [ARG=yes]
less verbose build output (undo: "make V=1")
verbose build output (undo: "make V=0")

--enable-dependency-tracking

do not reject slow dependency extractors

--disable-dependency-tracking

——enable-serial

Optional Packages:
--with-PACKAGE [=ARG]
--without-PACKAGE
-—with-psblas=DIR

speeds up one-time build
Specify whether to enable a fake mpi library to run
in serial mode.

use PACKAGE [ARG=yes]

do not use PACKAGE (same as --with-PACKAGE=no)
The install directory for PSBLAS, for example,
--with-psblas=/opt/packages/psblas-3.5

--with-psblas-incdir=DIR

Specify the directory for PSBLAS C includes.

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

--with-psblas-moddir=DIR

Specify the directory for PSBLAS Fortran modules.
--with-psblas-1libdir=DIR

Specify the directory for PSBLAS library.

--with-ccopt additional [CCOPT] flags to be added: will prepend
to [CCOPT]

--with-fcopt additional [FCOPT] flags to be added: will prepend
to [FCOPT]

--with-1libs List additional link flags here. For example,

--with-libs=-1special_system_lib or
--with-libs=-L/path/to/libs

—--with-clibs additional [CLIBS] flags to be added: will prepend
to [CLIBS]

--with-flibs additional [FLIBS] flags to be added: will prepend
to [FLIBS]

--with-library-path additional [LIBRARYPATH] flags to be added: will
prepend to [LIBRARYPATH]

--with-include-path additional [INCLUDEPATH] flags to be added: will
prepend to [INCLUDEPATH]

--with-module-path additional [MODULE_PATH] flags to be added: will
prepend to [MODULE_PATH]

--with-extra-libs List additional link flags here. For example,

--with-extra-libs=-1lspecial_system_lib or
--with-extra-libs=-L/path/to/libs

--with-blas=<1ib> use BLAS library <lib>
--with-blasdir=<dir> search for BLAS library in <dir>
--with-lapack=<1ib> use LAPACK library <1ib>

--with-mumps=LIBNAME Specify the libname for MUMPS. Default: autodetect
with minimum "-lmumps_common -lpord"
--with-mumpsdir=DIR Specify the directory for MUMPS library and
includes. Note: you will need to add auxiliary
libraries with --extra-libs; this depends on how
MUMPS was configured and installed, at a minimum
< you
will need SCALAPACK and BLAS
--with-mumpsincdir=DIR Specify the directory for MUMPS includes.
--with-mumpsmoddir=DIR Specify the directory for MUMPS Fortran modules.
--with-mumpslibdir=DIR Specify the directory for MUMPS library.
-—with-umfpack=LIBNAME Specify the library name for UMFPACK and its
< support

libraries. Default: "-lumfpack -lamd"
--with-umfpackdir=DIR Specify the directory for UMFPACK library and
includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.
--with-umfpacklibdir=DIR

Specify the directory for UMFPACK library.
--with-superlu=LIBNAME Specify the library name for SUPERLU library.

Default: "-lsuperlu"

3 CONFIGURING AND BUILDING AMG4PSBLAS 9

—-—-with-superludir=DIR Specify the directory for SUPERLU library and
includes.
--with-superluincdir=DIR
Specify the directory for SUPERLU includes.
--with-superlulibdir=DIR
Specify the directory for SUPERLU library.
--with-superludist=LIBNAME
Specify the libname for SUPERLUDIST library.
Requires you also specify SuperLU. Default:
"-lsuperlu_dist"
--with-superludistdir=DIR
Specify the directory for SUPERLUDIST library and
includes.
--with-superludistincdir=DIR
Specify the directory for SUPERLUDIST includes.
--with-superludistlibdir=DIR
Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<1lib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -1<library>

cC C compiler command

CFLAGS C compiler flags

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if
you have headers in a nonstandard directory <include dir>

MPICC MPI C compiler command
MPIFC MPI Fortran compiler command
CPP C preprocessor

Use these variables to override the choices made by ~“configure' or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <https://github.com/sfilippone/amgédpsblas/issues>.

For instance, if a user has built and installed PSBLAS 3.7 under the /opt directory and
is using the SuiteSparse package (which includes UMFPACK), then AMG4PSBLAS
might be configured with:

./configure --with-psblas=/opt/psblas-3.7/
— -—-with-umfpackincdir=/usr/include/suitesparse/

Once the configure script has completed execution, it will have generated the file
Make . inc which will then be used by all Makefiles in the directory tree; this file will be
copied in the install directory under the name Make . inc . AMG4PSBLAS.

To use the MUMPS solver package, the user has to add the appropriate options

10 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

to the configure script; by default we are looking for the libraries ~1dmumps -1lsmumps
-lzmumps -lcmumps -mumps_common -lpord. MUMPS often uses additional pack-
ages such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP; in such
cases it is necessary to add linker options with the --with-extra-1ibs configure op-
tion.
To build the library the user will now enter

make
followed (optionally) by

make install

3.4 Bugreporting

If you find any bugs in our codes, please report them through our issues page on

https://github.com/psctoolkit/amgdpsblas/issues

To enable us to track the bug, please provide a log from the failing application, the
test conditions, and ideally a self-contained test program reproducing the issue.

3.5 Example and test programs

The package contains the examples and tests directories; both of them are further
divided into fileread and pdegen subdirectories. Their purpose is as follows:

examples contains a set of simple example programs with a predefined choice of pre-
conditioners, selectable via integer values. These are intended to get acquainted
with the multilevel preconditioners available in AMG4PSBLAS.

tests contains a set of more sophisticated examples that will allow the user, via
the input files in the runs subdirectories, to experiment with the full range of
preconditioners implemented in the package.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pdegen
programs generate matrices in full parallel mode from the discretization of a sample
partial differential equation.

https://github.com/psctoolkit/amg4psblas/issues

4 GETTING STARTED 11

4 Getting Started

This section describes the basics for building and applying AMG4PSBLAS one-level and
multilevel (i.e., AMG) preconditioners with the Krylov solvers included in PSBLAS [20].
The following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, amg_xprec_ type,
where x may be s, d, ¢ or z, according to the basic data type of the sparse matrix
(s = real single precision; d = real double precision; c = complex single precision;
z = complex double precision). This data structure is accessed by the user only
through the AMG4PSBLAS routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a preconditioner
type chosen by the user. This is performed by the routine init, which also sets
defaults for each preconditioner type selected by the user. The preconditioner
types and the defaults associated with them are given in Table 1, where the
strings used by init to identify the preconditioner types are also given. Note that
these strings are valid also if uppercase letters are substituted by corresponding
lowercase ones.

3. Modify the selected preconditioner type, by properly setting preconditioner parameters.
This is performed by the routine set. This routine must be called if the user
wants to modify the default values of the parameters associated with the selected
preconditioner type, to obtain a variant of that preconditioner. Examples of use of
set are given in Section 4.1; a complete list of all the preconditioner parameters
and their allowed and default values is provided in Section 5, Tables 2-8.

4. Build the preconditioner for a given matrix. If the selected preconditioner is multilevel,
then two steps must be performed, as specified next.

4.1 Build the AMG hierarchy for a given matrix. This is performed by the routine
hierarchy_build.

4.2 Build the preconditioner for a given matrix. This is performed by the routine
smoothers_build.

If the selected preconditioner is one-level, it is built in a single step, performed by
the routine bld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed by the
method apply. When using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since apply is called by the PSBLAS routine implementing
the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine free. This
step is complementary to step 1 and should be performed when the preconditioner
is no more used.

12

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 5. Examples showing the basic use of
AMGA4PSBLAS are reported in Section 4.1.

TYPE STRING DEFAULT PRECONDITIONER
No preconditioner 'NONE' Considered to use the PSBLAS Krylov
solvers with no preconditioner.
Diagonal 'DIAG', Diagonal preconditioner. For any zero
"JACOBI', | diagonal entry of the matrix to be pre-
'L1-JACOBI'| conditioned, the corresponding entry of
the preconditioner is set to 1.
Gauss-Seidel 'GS"', Hybrid Gauss-Seidel (forward), that is,
'"L1-GS' global block Jacobi with Gauss-Seidel as
local solver.
Symmetrized Gauss-Seidel | 'FBGS', Symmetrized hybrid Gauss-Seidel, that
'L1-FBGS' | is, forward Gauss-Seidel followed by
backward Gauss-Seidel.
Block Jacobi 'BJAC', Block-Jacobi with ILU(0) on the local
'L1-BJAC!' blocks.
Additive Schwarz 'AS' Additive Schwarz (AS), with overlap 1
and ILU(0) on the local blocks.
Multilevel 'ML' V-cycle with one hybrid forward Gauss-

Seidel (GS) sweep as pre-smoother and
one hybrid backward GS sweep as post-
smoother, decoupled smoothed aggre-
gation as coarsening algorithm, and LU
(plus triangular solve) as coarsest-level
solver. See the default values in Tables 2-
8 for further details of the preconditioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module amg_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of AMG4PSBLAS, must be used in any
program calling such routines. The modules psb_base_mod, for the sparse matrix and
communication descriptor data types, and psb_krylov_mod, for interfacing with the
Krylov solvers, must be also used (see Section 4.1).

Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU _Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE prob-
lems. However, this does not necessarily correspond to the shortest execution time on

4 GETTING STARTED 13

parallel computers.

4.1 Examples

The code reported in Figure 1 shows how to set and apply the default multilevel precon-
ditioner available in the real double precision version of AMG4PSBLAS (see Table 1).
This preconditioner is chosen by simply specifying 'ML' as the second argument of
P%init (a call to P%set is not needed) and is applied with the CG solver provided by
PSBLAS (the matrix of the system to be solved is assumed to be positive definite). As
previously observed, the modules psb_base_mod, amg_prec_mod and psb_krylov_mod
must be used by the example program.

The part of the code dealing with reading and assembling the sparse matrix and
the right-hand side vector and the deallocation of the relevant data structures, per-
formed through the PSBLAS routines for sparse matrix and vector management, is
not reported here for the sake of conciseness. The complete code can be found in the
example program file amg_dexample_ml.£90, in the directory examples/fileread of
the AMG4PSBLAS implementation (see Section 3.5). A sample test problem along with
the relevant input data is available in examples/fileread/runs. For details on the use
of the PSBLAS routines, see the PSBLAS User’s Guide [20].

The setup and application of the default multilevel preconditioner for the real single
precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 5 for details). If these
versions are installed, the corresponding codes are available in examples/fileread/.

Different versions of the multilevel preconditioner can be obtained by changing
the default values of the preconditioner parameters. The code reported in Figure 2
shows how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre-
and post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps.
Note that the ILU(0) factorization (plus triangular solve) is used as local solver for
the block-Jacobi sweeps, since this is the default associated with block-Jacobi and set
by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies that
the coarsest-level matrix is distributed among the processes. Figure 3 shows how to
set a W-cycle preconditioner using the Coarsening based on Compatible Weighted
Matching, aggregates of size at most 8 and smoothed prolongators. It applies 2 hybrid
Gauss-Seidel sweeps as pre- and post-smoother, and solves the coarsest-level system
with the parallel flexible Conjugate Gradient method (KRM) coupled with the block-
Jacobi preconditioner having ILU(0) on the blocks. Default parameters are used for
stopping criterion of the coarsest solver. Note that, also in this case, specifying KRM
as coarsest-level solver implies that the coarsest-level matrix is distributed among the
processes.

The code fragments shown in Figures 2 and 3 are included in the example program
file amg_dexample_ml.£90 too.

Finally, Figure 4 shows the setup of a one-level additive Schwarz preconditioner,
i.e., RAS with overlap 2. Note also that a Krylov method different from CG must be
used to solve the preconditioned system, since the preconditione in nonsymmetric. The

14 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

use psb_base_mod
use amg_prec_mod
use psb_krylov_mod

! sparse matriz
type(psb_dspmat_type) :: A
! sparse matrixz descriptor

type (psb_desc_type) :: desc_A
! preconditioner
type (amg_dprec_type) :: P

! right-hand side and solution vectors
type(psb_d_vect_type) :: b, x

! 2nitialize the parallel environment
call psb_init(ctxt)
call psb_info(ctxt,iam,np)

! read and assemble the spd matrixz A and the right-hand side b
! using PSBLAS routines for sparse matriz / vector management

!
! 9nitialize the default multilevel preconditioner, %i.e. V-cycle
! with basic smoothed aggregation, 1 hybrid forward/backward

! GS sweep as pre/post-smoother and UMFPACK as coarsest-level

! solver

call P%init('ML',info)

! build the preconditioner

call P}hierarchy_build(A,desc_A,info)
call PY%smoothers_build(A,desc_A,info)

! set the solver parameters and the initial guess

! solve Az=b with preconditioned CG
call psb_krylov('CG',A,P,b,x,tol,desc_A,info)

! deallocate the preconditioner
call PY%free(info)

! deallocate other data structures

! exit the parallel environment
call psb_exit(ctxt)
stop

Listing 1: setup and application of the default multilevel preconditioner (example 1).

4 GETTING STARTED 15

corresponding example program is available in the file amg_dexample_1lev.£90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory examples/pdegen.

! butld a V-cycle preconditioner with 1 block-Jacobi sweep (with

! ILU(0) on the blocks) as pre- and post-smoother, and 8 block-Jacobt
! sweeps (with ILU(O) on the blocks) as coarsest-level solver

call P%init('ML',info)

call PYset('SMOOTHER_TYPE', 'BJAC',info)

call PYset('COARSE_SOLVE', 'BJAC',info)

call PYset('COARSE_SWEEPS',8,info)

call P/hierarchy_build(A,desc_A,info)

call PYsmoothers_build(A,desc_A,info)

Listing 2: setup of a multilevel preconditioner based on the default decoupled coarsen-
ing

!build a W-cycle using the coupled coarsening based on weighted matching,
laggregates of size at most 8 and smoothed prolongators,

12 hybrid Gauss—Setdel sweeps as pre- and post—-smoother,

land parallel flexible Conjugate Gradient coupled with the block-Jacob?
!preconditioner having ILU(O) on the blocks as coarsest solver.

call PYinit('ML',info)

call P¥%set('PAR_AGGR_ALG','COUPLED',info)

call PY%set('AGGR_TYPE', 'MATCHBOXP',info)

call P¥set('AGGR_SIZE',8,info)

call P¥set('ML_CYCLE','WCYCLE',info)

call PYset('SMOOTHER_TYPE', 'FBGS',info)

call PYset('SMOOTHER_SWEEPS',2,info)

call PY%set('COARSE_SOLVE','KRM',info)

call P/hierarchy_build(A,desc_A,info)

call PYsmoothers_build(A,desc_A,info)

Listing 3: setup of a multilevel preconditioner based on the coupled coarsening using
weighted matching

! butld a one-level RAS with overlap 2 and ILU(0O) on the local blocks.
call P%init('AS',info)

call PY%set('SUB_OVR',2,info)

call PY%build(A,desc_A,info)

! solve Az=b with preconditioned BiCGSTAB
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info)

Listing 4: setup of a one-level Schwarz preconditioner.

16 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

4.2 GPU example

The code discussed here shows how to set up a program exploiting the combined GPU
capabilities of PSBLAS and AMG4PSBLAS. The code example is available in the source
distribution directory amg4psblas/examples/gpu.

First of all, we need to include the appropriate modules and declare some auxiliary
variables: In this particular example we are choosing to employ a HLG data structure for

program amg_dexample_gpu

use psb_base_mod

use amg_prec_mod

use psb_krylov_mod

use psb_util_mod

use psb_gpu_mod

use data_input

use amg_d_pde_mod
implicit none

type(psb_d_hlg_sparse_mat) :: agmold
type (psb_d_vect_gpu) :: vgmold
type (psb_i_vect_gpu) :: igmold

Listing 5: setup of a GPU-enabled test program part one.

sparse matrices on GPUs; for more information please refer to the PSBLAS-EXT users’
guide.

We then have to initialize the GPU environment, and pass the appropriate MOLD
variables to the build methods (see also the PSBLAS and PSBLAS-EXT users’ guides).
Finally, we convert the input matrix, the descriptor and the vectors to use a GPU-enabled

call psb_init(ctxt)
call psb_info(ctxt,iam,np)

call psb_gpu_init(ictxt)

t1 = psb_wtime()
call precsmoothers_build(a,desc_a,info, amold=agmold, vmold=vgmold,
— imold=igmold)

Listing 6: setup of a GPU-enabled test program part two.

internal storage format. We then preallocate the preconditioner workspace before

4 GETTING STARTED 17

entering the Krylov method. At the end of the code, we close the GPU environment

call desc_a%cnv(mold=igmold)

call ajcscnv(info,mold=agmold)

call psb_geasb(x,desc_a,info,mold=vgmold)
call psb_geasb(b,desc_a,info,mold=vgmold)

call psb_barrier(ctxt)

call prechallocate_wrk(info)

t1 = psb_wtime()

call psb_krylov(s_choicefkmethd,a,prec,b,x,s_choiceleps,&
&
< desc_a,info,itmax=s_choiceitmax,iter=iter,err=err,itrace=s_choicelitrace,&
& istop=s_choice%istopc,irst=s_choicelirst)

call precdeallocate_wrk(info)

call psb_barrier(ctxt)

tslv = psb_wtime() - ti

call psb_gpu_exit()
call psb_exit(ctxt)

Listing 7: setup of a GPU-enabled test program part three.

It is very important to employ solvers that are suited to the GPU, i.e. solvers that
do NOT employ triangular system solve kernels. Solvers that satisfy this constraint
include:

e JACOBI
e INVK
e INVT
e AINV

and their ¢; variants.

18 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5 User Interface

The basic user interface of AMG4PBLAS consists of eight methods. The six methods
init, set, build, hierarchy_build, smoothers_build and apply encapsulate all the
functionalities for the setup and the application of any multilevel and one-level precon-
ditioner implemented in the package. The method free deallocates the preconditioner
data structure, while descr prints a description of the preconditioner setup by the user.
For backward compatibility, methods are also accessible as stand-alone subroutines.

For each method, the same user interface is overloaded with respect to the real/-
complex and single/double precision data; arguments with appropriate data types
must be passed to the method, i.e.,

e the sparse matrix data structure, containing the matrix to be preconditioned, must
be of type psb_xspmat_type with x = s for real single precision, x = d for real
double precision, x = ¢ for complex single precision, x = z for complex double
precision;

e the preconditioner data structure must be of type amg_xprec_type, withx = s, d,
¢, z, according to the sparse matrix data structure;

e the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = B~ v must be of type psb_xvect_type with x = s, d, ¢, z, in a manner
completely analogous to the sparse matrix type;

e real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 5.2).

A description of each method is given in the remainder of this section.

5 USER INTERFACE 19

5.1 Method init

call pkinit(contxt,ptype,info)

This method allocates and initializes the preconditioner p, according to the precondi-
tioner type chosen by the user.

Arguments

contxt type(psb_ctxt_type), intent(in).
The communication context.
ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that strings are case insensitive.
info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

20 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.2 Method set

call plset(what,val,info [,ilev, ilmax, pos, idx])

This method sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments

what character(len=*).
The parameter to be set. It can be specified through its name; the string
is case-insensitive. See Tables 2-8.

val integer or character(len=*) or real(psb_spk_) or real(psb_dpk_),
intent (in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character (len=%), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
ilev integer, optional, intent(in).

For the multilevel preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is
not present, the parameter identified by what is set at all levels that are
appropriate (see Tables 2-8).

ilmax integer, optional, intent(in).
For the multilevel preconditioner, when both ilev and ilmax are present,
the settings are applied at all levels ilev:ilmax. When ilev is present
but ilmax is not, then the default is ilmax=ilev. The levels are num-
bered in increasing order starting from the finest one, i.e., level 1 is the
finest level.

pos character(len=%), optional, intent(in).
Whether the other arguments apply only to the pre-smoother ('PRE") or
to the post-smoother ('POST"'). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is

ignored.

idx integer, optional, intent(in).
An auxiliary input argument that can be passed to the underlying ob-
jects.

A variety of preconditioners can be obtained by setting the appropriate precondi-
tioner parameters. These parameters can be logically divided into four groups, i.e.,
parameters defining

1. the type of multilevel cycle and how many cycles must be applied;

5 USER INTERFACE 21

2. the coarsening algorithm;
3. the solver at the coarsest level (for multilevel preconditioners only);
4. the smoother of the multilevel preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values, is
given in Tables 2-8.

Remark 2. A smoother is usually obtained by combining two objects: a smoother
('SMOOTHER_TYPE') and a local solver ('SUB_SOLVE'), as specified in Tables 7-8. For
example, the block-Jacobi smoother using ILU(0) on the blocks is obtained by combining
the block-Jacobi smoother object with the ILU(0) solver object. Similarly, the hybrid
Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the block-Jacobi
smoother object with a single sweep of the Gauss-Seidel solver object, while the point-
Jacobi smoother is the result of combining the block-Jacobi smoother object with a single
sweep of the point-Jacobi solver object. In the same way are obtained the ¢;-versions
of the smoothers. However, for simplicity, shortcuts are provided to set all versions
of point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward Gauss-Seidel,
i.e., the previous smoothers can be defined just by setting ' SMOOTHER_TYPE' to certain
specific values (see Tables 7), without the need to set 'SUB_SOLVE' as well.

The smoother and solver objects are arranged in a hierarchical manner. When
specifying a smoother object, its parameters, including the local solver, are set to their
default values, and when a solver object is specified, its defaults are also set, overriding
in both cases any previous settings even if explicitly specified. Therefore if the user sets
a smoother, and wishes to use a solver different from the default one, the call to set the
solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).

Remark 3. Many of the coarsest-level solvers cannot be used with both replicated
and distributed coarsest-matrix layouts; therefore, setting the solver after the layout
may change the layout. Similarly, setting the layout after the solver may change the
solver.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU_Dist and KRM require it to be distributed. In these cases,
setting the coarsest-level solver implies that the layout is redefined according to the
solver, ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel
and block-Jacobi can be applied to replicated and distributed matrices, thus their choice
does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
and their /; — versions reduce to the corresponding local solver objects (see Remark 2).
For the point-Jacobi and Gauss-Seidel solvers, these objects correspond to a single
point-Jacobi sweep and a single Gauss-Seidel sweep, respectively, which are very poor
solvers.

22 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

On the other hand, the distributed layout can be used with any solver but UMFPACK
and SuperLU; therefore, if any of these two solvers has already been selected, the
coarsest-level solver is changed to block-Jacobi, with the previously chosen solver
applied to the local blocks. Likewise, the replicated layout can be used with any solver
but SuperLu_Dist and KRM; therefore, if SuperLu_Dist or KRM have been previously
set, the coarsest-level solver is changed to the default sequential solver.

In a parallel setting with many cores, we suggest to the users to change the default
coarsest solver for using the KRM choice, i.e. a parallel distributed iterative solution of
the coarsest system based on Krylov methods.

Remark 4. The argument idx can be used to allow finer control for those solvers; for
instance, by specifying the keyword 'MUMPS_IPAR_ENTRY' and an appropriate value for
idx, it is possible to set any entry in the MUMPS integer control array. See also Sec. 6.

23

5 USER INTERFACE

‘paridde aq 03 $9[945 Jo ToqUUINU S} pue S[IAD [PAI[HNW Y} SUTULIP SIdoWeIe]

7 31qeL

1 < Jaqunu

"S9[0AD TOAI[INW JO IdqUINN] I 1939yur Auy I10809uT \ SATAMS "TTOAD |

dav.,

VATOADN

‘uorjisodwod aanIppe pue VATOADM
S[AD-Y “O[Ad-M “OPAI-A BPAD [oASTINIA VITOADA VITIDADA, | (x=UST)Io30eIReyd VITOAD I,
SINANWNOD 1'1nvdad TReA ddAL VIVd jeyn

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

24

what DATA TYPE val DEFAULT COMMENTS
'"MIN_COARSE_SIZE_PER_PROCESS'| integer Any number | 200 Coarse size threshold per process. The
>0 aggregation stops if the global number of
variables of the computed coarsest matrix
is lower than or equal to this threshold
multiplied by the number of processes
(see Note).
'"MIN_COARSE_SIZE' integer Any number | -1 Coarse size threshold. The aggrega-
>0 tion stops if the global number of vari-
ables of the computed coarsest matrix
is lower than or equal to this thresh-
old (see Note). If negative, it is
ignored in favour of the default for
'"MIN_COARSE_SIZE_PER_PROCESS'.
'"MIN_CR_RATIO' real Any number | 1.5 Minimum coarsening ratio. The aggrega-
>1 tion stops if the ratio between the global
matrix dimensions at two consecutive lev-
els is lower than or equal to this threshold
(see Note).
'MAX_LEVS' integer Any integer | 20 Maximum number of levels. The aggrega-
number > 1 tion stops if the number of levels reaches
this value (see Note).
'"PAR_AGGR_ALG' character (len=x*)| ’DEC’, ’DEC’ Parallel aggregation algorithm.
’>SYMDEC”, the SYMDEC option applies decoupled ag-
’COUPLED’ gregation to the sparsity pattern of A +

AT

25

5 USER INTERFACE

‘unrrode uonedardde ayy Juruygep sivjewereJ ¢ d[qe].

"S[OAJ] JO IAqUINU WINWIXEW PIrj0ads oy} Uk} IS[[EWS 9q ABUI S[OAS] JO IOQUINU [ENIOL S} “OI0JIdY [,
“PaYoeaI SI S[9AJ] JO IdqUINU WNWIXEW d3 IO ‘Orjer SUruasIeod Wnwiuru g}
‘PIOYSOI} 9ZIS 9SIL0D A} :JOUI SI BLIS)LID SUIMO[[O] 9} JO SUO 3sea] Je uaym sdoys unpjriode uonedaidde ayJ, 9joN

‘(103
-e3uofoxd aA13RIUS)} “3°T) PIYIOOWS
-un 10 payjoows wyjIod[e uorn
-e3a133e oy} Aq pasn 103e3uo[or]

 (IHLOOKS

 (IHIO0OWSNA
 CIHLOOKS |

(*=U8T) I930BRICYD

10¥d ¥DDV .

«dX09HOLYN . pue
(QITdN0D « YIM ATUO pas) 's103ed
-uojoxd payjoouss jo asn sy} puaur
-woda1 am g uey} 1a3re] 9yedaid
-3e jo ozr1s ypm 3urussILOD DATS
-sa133e 10 ‘pordde st Sunpiewr
uo paseq uonedard3de pardnoo ayy
uaym saje3a133e Jo 9zZIs WnwIxejn

[4
< ozTs 133e
M C
jo omod

128ayur Auy

Io8eaqut

VHZIS UDIV,

‘[6] 2Sexoed
ATEMIJOS J-XOGUDILIA 9} UI pajuaw
-ordunt Suryoyewr ayewrxoxdde-jrey
3} Jo uoisiaA [affered e uo paseq
st uonedard3de pardnod ayy, [¢7] Te
39 uopeIn) Aq auo Iy} pue ‘[¢¢] eur
-Z3Ig pue [OPUBIA “[QUeA Aq duo
3} “UOT}OUUO0D JO YF3USIIS JO SAINS
-eowr oM} juow[dwr am uoned
-0183e pardnodsp oy 10§ ‘Apuar
-md sunyrrodre uonedardde jo adAy,

1 TO0S,

1 dXOGHO LY,
12008
', 7008,

(*=U8T) I930BRICYD

v ddAL UDDV,

SINHWIWOD

11nv4ad

TeAr

ddAL V1IvVd

Jeyn

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

26

what DATA TYPE val DEFAULT COMMENTS
"AGGR_ORD' character (len=x) ’NATURAL’ ’NATURAL’ Initial ordering of indices for the decou-
’DEGREE’ pled aggregation algorithm: either natu-
ral ordering or sorted by descending de-
grees of the nodes in the matrix graph.
'AGGR_THRESH' real (kind_parameter) | Any real 0.01 The threshold 6 in the strength of con-
number nection algorithm. See also the note at
[0,1] the bottom of this table.
"AGGR_FILTER' character(len=*) ’FILTER’ ’NOFILTER’ Matrix used in computing the
’NOFILTER’ smoothed prolongator: filtered or

unfiltered.

Note. Different thresholds at different levels, such as those used in [33, Section 5.1], can be easily set by invoking the rou-
tine set with the parameter ilev.

Table 4: Parameters defining the aggregation algorithm (continued).

27

5 USER INTERFACE

“uorsaid a[qnop ur ATuo a[qereae are
ISIQ-N119dng pue YOVIAINN ey osTe ajoN “(F¢ 'd
‘C STeUWSY 99S) ISAJOS S} JO ISN A} SMO[[E YdIYyMm
anfea jJnejap e 03 13s ST NoAe[XLjew ay) ‘payroads
ST SI9ATOS snotadxd ayj Jo Aue UsUAA “XLIjew pajnqgry

-STp e 10 pajedrdal e 19U} 3IM Pasn aq ued SIHNK 1 SHEA-TT,
‘pamnqrusIp aq 03 3t axmbai yy pue oy rd ‘Sp ‘1900VC OVLa-TT,
‘181anTS “payedrjdar aq 03 XLIyew }S9sIL0d Y} xmb 1900V C-TT,
-31 (1TS PUe NN Ye) 9JON 'SYD0[q aYj uo (0) 11 Yim VIWEN
1auonTpuodard 1qode[-3o0[q ayi Yynm pajdnod (yus No)/x:0
-1peIq) ayednfuo)) [qIXa[J) POYISIAl AOTAIY {SUOTSIDA .SH,
-13 paje[a1 pue 1qode[-3d0[q I0 [oPIag-ssneq) prLiqiAy 1900V [,
1qooe(-jurod {(sajos ren3uern snid) 3syq N 1rdng ,1S1dn7IS,
10 SINNIN WLy (] PAMGLLSIP (94108 rem3ue 7S,
-3 snid) N1RdNG 10 MDOVIIINN ‘SANNIN Woxy ENE

N1 renuanbas :JoAd] 1S9SIL0D dY} Je Pasn ISAJOS | "9JON] 995 (SAWNW, | (x=UST)I83dBIRYD VAATOS ASHY0D
“WdY} JO Yoead uo pajedrjdar 10 sassad 1dFY

-o01d a3 Suowre panqrusIp :JNOLL XLIJEUW }S9SIL0D) ,1dAY 1 LSIA, | (x=UsT)Id83dRICYD LYW ASHY0D,

SINHININOD 11nvddd TeA 4dAL VLVd jeyn

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

28

'COARSE_SUBSOLVE'

character (len=%)

'"ILU!'
'"ILUT'
'MILU'
'MUMPS'
'SLU'
"UMF'
"INVT'
"INVK'
"AINV'

See Note.

Solver for the diagonal blocks of the coarsest ma-
trix, in case the block Jacobi solver is chosen as
coarsest-level solver: ILU(p), ILU(p,t), MILU(p),
LU from MUMPS, SuperLU or UMFPACK (plus tri-
angular solve), Approximate Inverses INVK(p,),
INVT(p1, p2,t1, t2) and AINV(t); note that approxi-
mate inverses are specifically suited for GPUs since
they do not employ triangular system solve kernels,
see [3]. Note that UMFPACK and SuperLU _Dist are
available only in double precision.

Note. Defaults for COARSE_SOLVE and COARSE_SUBSOLVE are chosen in the following order:
single precision version — MUMPS if installed, then SLU if installed, ILU otherwise;
double precision version — UMF if installed, then MUMPS if installed, then SLU if installed, ILU otherwise.

what DATA TYPE val DEFAULT COMMENTS

'COARSE_SWEEPS' integer Any inte- | 10 Number of sweeps when JACOBI, GS or BJAC is cho-
ger sen as coarsest-level solver.
number
>0

"COARSE_FILLIN' integer Any inte- | 0 Fill-in level p of the ILU factorizations and first fill-
ger in for the approximate inverses.
number
>0

'COARSE_ILUTHRS' real (kind_parameter) | Anyreal |0 Drop tolerance ¢t in the ILU(p, t) factorization and
number tirst drop-tolerance for the approximate inverses.
>0

Note. Further options for coarse solvers are contained in Table 6.
For a first use it is suggested to use the default options obtained by simply selecting the solver type.

Table 5: Parameters defining the solver at the coarsest level (continued).

29

5 USER INTERFACE

“IOAJOS AOTAIY 9SIL0D d1f) I0J Pasn 3 ued

1 9[qeL, Y} WO SIOUORIPu0d31d [9AS[-2U0 Y, ,ovre, 1 9[qeL (*x=UST) I930CIRYD 0TI W
"uoneULIOUL JoyIny 10§ [0Z] 9pmS SV IgSd
3y} 0} 19§y "SUIIL)SAI YIIM POYIdW [enpISy
[EWIUIA POZI[eIdUaD) dY}) SHUWHY ‘Suryre)sar
UM POYIoW pazIIqels juarpeis) ayednfuo)
-Ig 943 T9VLSHOIL ‘POYIoW PIZI[Iqe}S JusIpels)
rednfuo)-1g 9y} 9Y.1SHDIL ‘POYIdW JUSIpeRID)
ednfuo)-1g ay} HOI9 ‘POYIOW JUITpRIL) d93ed , SHYNOY ,
-nfuoD) S[qIX3[Y} HOA ‘POYIoW [enpIsy d3ed ,19Y1SH01d,
-nfuo)) pazIfeIausn) 3y} YOH ‘POYIdW PIZI[IqeIS L AV1SH0Ig,
JusIpeIn) 93e3n{uo)) Ay} §9) (POYIAW JUSIpLID) /D014,
a1e3n[uo)) 3[qIXa[] 3} HOA ‘POYIW JUSIPLID) JEDD
91ednfuo)) ay} H) “ISA[OS ISILOD © SB ,[[UY, ,SH0,
poyiowr AOJADY e 3urdojdwa usym pasn aq VDD,
0} POY3}aW SAT}RIS} 3} Saulyap ey} JuLys v /D04, /D0, (¥=UST) I9700IRYD \ QOHLAN WY
‘Tenprsax 1>
a3 uo uor 3urddoys ayj 10§ ddUERIS[O], 0 [ea1 Auy | (xejewered pury)Tesl ,101d01S™oVrd,
“pajernoed aq 03 0<
SI [ENPISAI € YOTYM Jo}je SUOIIRISN JO IDqUINN] I- | 1980yur Auy 1980quT IOFHISTY OV,
‘payurxd aq 0<
0] ST ddeI) B UDIYM 19} SUOTIRIDN JO IdqUINN I- | 1989yur Auy I080quUT CIOVHLI T OVCd,
“IDAJOS 9SILOD B St Pasn
POYIoW 1qOdE([-D0[g 9} 10J [enpIsal paje[nd VANYL,
-[ed ay3 103 2oexy e jurid 0} IdyeYM 309]9g L ASTYA, VASTYA, (x=UST) I8300IRYD AOVHLTOVCd,
"I9A]OS
9SIEOD B SE Pasn Poyjaw Iqode(-yd0[g Y} 10§ VANYL,
uorzdn 3urddojs e asn 03 IOYRYM 30995 L ASTIVA, L ASTIV A, (¥=UST)I9300IRyD ,d01sS™ovrg,
SINAWIWOD | I1nv4dd Tea AdAL VIVA qeym

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

30

'KRM_SUB_SOLVE' character(len=x) Table 5 'ILU" Solver for the diagonal blocks of the coarsest matrix
preconditioner, in case the block Jacobi solver is
chosen as 'KRM_KPREC': ILU(p), ILU(p, t), MILU(p),
LU from MUMPS, SuperLU or UMFPACK (plus
triangular solve), Approximate Inverses INVK(p, q),
INVT(p1, p2, t1,t2) and AINV(t); The same caveat
from Table 5 applies here.

'KRM_GLOBAL' character(len=x) 'TRUE', 'FALSE' Choose between a global Krylov solver, all un-

'FALSE' knowns on a single node, or a distributed one. The
default choice is the distributed solver.

'"KRM_EPS' real (kind_parameter) | Real<1 |10°° The stopping tolerance.

'KRM_IRST' integer Integer 30 An integer specifying the restart parameter. This

>1 is employed for the BiCGSTABL or RGMRES methods,
otherwise it is ignored.

'KRM_ISTOPC' integer Integers | 2 If 1 then the method uses the normwise backward

1,23 error in the infinity norm; if 2, the it uses the relative
residual in the 2-norm; if 3 the relative residual
reduction in the 2-norm is used instead; refer to the
PSBLAS [20] guide for the details.

'KRM_ITMAX' integer Integer 40 The maximum number of iterations to perform.

>1

'"KRM_ITRACE' integer Integer -1 If > 0 print out an informational message about

>0 convergence every 'KRM_ITRACE' iterations. If = 0
print a message in case of convergence failure.

"KRM_FILLIN' integer Integer 0 Fill-in level p of the ILU factorizations and first fill-

>0 in for the approximate inverses.

Table 6: Additional parameters defining the solver at the coarsest level.

31

5 USER INTERFACE

1dUONIPU0d3Id [9A3]-9U0 JY) JO S[Te}aP Y} IO IDYH00oWs Y} JUTUYSP SIdjourereJ

£ d1qe].

‘ATUO ZIR MG

0 < Joqumu

AYIPPY 10§ ‘s1afe[de[1aa0 jo raquINN 1| re8ayur Auy I0803uT ,HAD~ENS,
‘AToAnoadsar ‘| 1504, =sod 10 ,qud, =sod
ym 1939303 () 03 39s st 1a3owrered sIyy Ji
pasn st 1ajoows-3sod 10 1ayjows-a1d ou
‘3SLD [OA[INW Y} U] “IouonIpuoddid [9Ad] 0 < Jaqumu
-9U0 0 J9Yjoows ay) Jo sdoams Jo quny 1 | 1e8ayur Auy 1088quT \ SdTAMS ~YAHIO0NS |
‘[PP1og-ssnen)
PrIgAy uo s[rejap 103 9J0N 993G [¢] 99s ‘sjou VANTY .
-1 9A]0S wd)sAs rendueryy Lojdws jou op AN
Aoy aduts s g5 10§ payins A[feoymoads are IANT
saszoaur ayewrxoxdde yeyy ajou {(HANIV ARA
pue (41 zd "\d) LANI ‘(b “d)M ANI 595194 SI9 IS,
-ug ayewrxoiddy ‘(2ajos rem3uerny snid) | -uonrpuodaid [2a97-au0 \ SAWAK |
MOVAANN 10 N7119dNG ‘SINNIN WoLy (1] | ZIBMUDS dARIPPY pue TIW
(NTIN ‘()T ()T ‘PPIeS-ssneD) | 1qode[{20[q 10§ NTT V10T
prempeq prigiy ‘[Ppreg-ssneq) (premioy) Apeanoadsar 0TI,
prigiy ‘1qooe(-jurod : (g 98ed ‘g reway | ‘szouonrpuodsid (949 S99,
99s) 19UONTPU0d3Id [9A]-2UO 10 ISYIO0WS | -[NUW JO SIdjoous-}sod /SD,
U} YIIM Ppasn dq 0} ISA[OS [edo] Y], | pue -a1d 105 gHg pue o \I900VL, | (%=UST)Io3oRIeyD VIAT0S™ANS .,
1 SPEA-TT,
‘s1ouonIpu0da1d [9Ad[-auU0 Aq pa1oudr st i OVLa-17,
‘ZIEMUDG SATNIPPY PUe I1qode(1 1900VL-TT,
-yutod-T) ‘[oprag-ssnen) (piemioy) prgqiy SV,
-1y ‘1qooe[-1) ‘1qode[(-}20[q ‘[9pIag-ssnen) Vg,
prempeq prigiy ‘[Ppreg-ssneq) (premioy) .SDd,
prqAy ‘1qooe(-jurod :reuorrpuodard [949] .89,
-j[NW 8y} Ur pasn Idyjoows jo adAf 5944, , 1800V, | (x=ueT)aIs3oereyd \IdAL HIHLOOKS .
SINHIWINOD 1invdad TeA ddAL V1IVd Jeyn

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

32

what DATA TYPE val DEFAULT COMMENTS
'SUB_RESTR' character (len=x*) "HALO' "HALO' Type of restriction operator, for Additive
'NONE' Schwarz only: HALQ for taking into account
the overlap, 'NONE' for neglecting it.
Note that HALO must be chosen for the clas-
sical Addditive Schwarz smoother and its
RAS variant.
"SUB_PROL' character (len=x%) 'SUM' 'NONE' Type of prolongation operator, for Additive
'NONE' Schwarz only: 'SUM' for adding the con-
tributions from the overlap, 'NONE' for ne-
glecting them.
Note that 'SUM' must be chosen for the
classical Additive Schwarz smoother, and
'NONE' for its RAS variant.
'SUB_FILLIN' integer Any integer 0 Fill-in level p of the incomplete LU factor-
number > 0 izations.
'SUB_ILUTHRS' real(kind_parameter) | Any real num-| 0 Drop tolerance t in the ILU(p, t) factoriza-

ber > 0

tion.

'"MUMPS_LOC_GLOB'

character (len=%)

'LOCAL_SOLVER'
'GLOBAL_SOLVER'

'GLOBAL_SOLVER'

Whether MUMPS should be used as a dis-
tributed solver, or as a serial solver acting
only on the part of the matrix local to each
process.

'MUMPS_IPAR_ENTRY'| integer Any integer | 0 Set an entry in the MUMPS integer control
number array, as chosen via the idx optional argu-

ment.
'MUMPS_RPAR_ENTRY' | real Any real number | 0 Set an entry in the MUMPS real control ar-

ray, as chosen via the idx optional argu-
ment.

Table 8: Parameters defining the smoother or the details of the one-level preconditioner (continued).

5 USER INTERFACE 33

5.3 Method hierarchy _build

call phierarchy_build(a,desc_a,info)

This method builds the hierarchy of matrices and restriction/prolongation operators
for the multilevel preconditioner p, according to the requirements made by the user
through the methods init and set.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [20].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [20].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

34

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.4 Method smoothers_build

call plsmoothers_build(a,desc_a,p,info[,amold,vmold,imold])

This method builds the smoothers and the coarsest-level solvers for the multilevel
preconditioner p, according to the requirements made by the user through the methods
init and set, and based on the aggregation hierarchy produced by a previous call to
hierarchy_build (see Section 5.3).

Arguments

a

desc_a

info

amold

vmold

imold

type (psb_xspmat_type), intent(in).

The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [20].

type (psb_desc_type), intent(in).

The communication descriptor of a. See the PSBLAS User’s Guide for
details [20].

integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.
class(psb_xgbase_sparse_mat), intent(in), optional.

The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [20].
class(psb_xgbase_vect_type), intent(in), optional.

The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

class(psb_i_base_vect_type), intent(in), optional.

The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

5 USER INTERFACE 35

5.5 Method build

call p¥%build(a,desc_a,info[,amold,vmold,imold])

This method builds the preconditioner p according to the requirements made by the
user through the methods init and set (see Sections 5.3 and 5.4 for multilevel pre-
conditioners). It is mostly provided for backward compatibility; indeed, it is inter-
nally implemented by invoking the two previous methods hierarchy_build and
smoothers_build, whose nomenclature would however be somewhat unnatural when
dealing with simple one-level preconditioners.

Arguments

a type (psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [20].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [20].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class (psb_xgbase_sparse_mat) , intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [20].

vmold class (psb_xgbase_vect_type) , intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

The method can be used to build multilevel preconditioners too.

36 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.6 Method apply

call phapply(x,y,desc_a,info [,trans,work])

This method computes y = op(B~!) x, where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to
the value of trans. Note that, when AMG4PSBLAS is used with a Krylov solver from
PSBLAS, plapply is called within the PSBLAS method psb_krylov and hence it is
completely transparent to the user.

Arguments

X type(kind_parameter), dimension(:), intent(in)—.
The local part of the vector x. Note that type and kind_parameter must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

y type (kind_parameter), dimension(:), intent(out)—.
The local part of the vector y. Note that type and kind_parameter must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

trans character(len=1), optional, intent(in).
If trans = 'N','n' then op(B™!) = B~!; if trans = 'T','t"' then
op(B~') = BT (transpose of B!); if trans = 'C', 'c' then op(B~!) =
B~C (conjugate transpose of B~1).

work type(kind_parameter), dimension(:), optional, target—.
Workspace. Its size should be at least 4 * psb_cd_get_local_
cols(desc_a) (see the PSBLAS User’s Guide). Note that fype and
kind_parameter must be chosen according to the real/complex, sin-
gle/double precision version of AMG4PSBLAS under use.

5 USER INTERFACE

5.7 Method free

call p¥%free(p,info)
This method deallocates the preconditioner data structure p.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

37

38 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.8 Method descr

call plkdescr(info, [iout, root, verbosityl)

This method prints a description of the preconditioner p to the standard output or to
a file. It must be called after hierachy_build and smoothers_build, or build, have
been called.

Arguments
info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
iout integer, intent(in), optional.

The id of the file where the preconditioner description will be
printed; the default is the standard output.

root integer, intent(in), optional.
The id of the process where the preconditioner description will be
printed; the default is psb_root_.

verbosity integer, intent(in), optional.
The verbosity level of the description. Default value is 0. For
values higher than 0, it prints out further information, e.g., for a
distributed multilevel preconditioner the size of the coarse matri-
ces on every process.

5.9 Auxiliary Methods

Various functionalities are implemented as additional methods of the preconditioner
object.

5.9.1 Method: dump

call pkdump(infol,istart,iend,prefix,head,ac,rp,smoother,solver,global_num])

Dump on file.

Arguments

info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class (psb_xgbase_sparse_mat) , intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [20].

5 USER INTERFACE 39

5.9.2 Method: clone
call p¥%clone(pout,info)

Create a (deep) copy of the preconditioner object.

Arguments
pout type(amg_xprec_type), intent(out).
The copy of the preconditioner data structure. Note that x must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.

5.9.3 Method: sizeof
sz = phsizeof ([globall)

global 1logical, optional
Whether the global or local preconditioner memory occupation is de-
sired. Default: .false..
Return memory footprint in bytes.

5.9.4 Method: allocate_ wrk
call plallocate_wrk(infol[, vmold])

Allocate internal work vectors. Each application of the preconditioner uses a number
of work vectors which are allocated internally as necessary; therefore allocation and
deallocation of memory occurs multiple times during the execution of a Krylov method.
In most cases this strategy is perfectly acceptable, but on some platforms, most notably
GPUs, memory allocation is a slow operation, and the default behaviour would lead to
a slowdown. This method allows to trade space for time by preallocating the internal
workspace outside of the invocation of a Krylov method. When using GPUs or other
specialized devices, the vmold argument is also necessary to ensure the internal work
vectors are of the appropriate dynamic type to exploit the accelerator hardware; when
allocation occurs internally this is taken care of based on the dynamic type of the x
argument to the apply method.

Arguments
info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
vmold class(psb_xgbase_vect_type), intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

40 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.9.5 Method: free_wrk

call plkfree_wrk(info)
Deallocate internal work vectors.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 USER INTERFACE 41

6 Adding new smoother and solver objects to AMG4PSBLAS

Developers can add completely new smoother and/or solver classes derived from the
base objects in the library (see Remark 2 in Section 5.2), without recompiling the library
itself.

To do so, it is necessary first to select the base type to be extended. In our experience,
it is quite likely that the new application needs only the definition of a “solver” object,
which is almost always acting only on the local part of the distributed matrix. The
parallel actions required to connect the various solver objects are most often already
provided by the block-Jacobi or the additive Schwarz smoothers. To define a new solver,
the developer will then have to define its components and methods, perhaps taking
one of the predefined solvers as a starting point, if possible.

Once the new smoother/solver class has been developed, to use it in the context of
the multilevel preconditioners it is necessary to:

e declare in the application program a variable of the new type;

e pass that variable as the argument to the set routine as in the following:

call plset(smoother,info [,ilev,ilmax,pos])
call prkset(solver,info [,ilev,ilmax,pos])

e link the code implementing the various methods into the application executable.

The new solver object is then dynamically included in the preconditioner structure, and
acts as a mold to which the preconditioner will conform, even though the AMG4PSBLAS
library has not been modified to account for this new development.

It is possible to define new values for the keyword WHAT in the set routine; if the
library code does not recognize a keyword, it passes it down the composition hierarchy
(levels containing smoothers containing in turn solvers), so that it can eventually be
caught by the new solver. By the same token, any keyword/value pair that does not
pertain to a given smoother should be passed down to the contained solver, and any
keyword /value pair that does not pertain to a given solver is by default ignored.

An example is provided in the source code distribution under the folder tests/newslv.
In this example we are implementing a new incomplete factorization variant (which
is simply the ILU(0) factorization under a new name). Because of the specifics of this
case, it is possible to reuse the basic structure of the ILU solver, with its L/D/U com-
ponents and the methods needed to apply the solver; only a few methods, such as the
description and most importantly the build, need to be ovverridden (rewritten).

The interfaces for the calls shown above are defined using

smoother class(amg_x_base_smoother_type)

The user-defined new smoother to be employed in the preconditioner.
solver class(amg_x_base_solver_type)

The user-defined new solver to be employed in the preconditioner.

42 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

The other arguments are defined in the way described in Sec. 5.2. As an example, in the
tests/newslv code we define a new object of type amg_d_tlu_solver_type, and we
pass it as follows:

! sparse matriz and preconditioner
type (psb_dspmat_type) :: a

type (amg_dprec_type) :: prec

type (amg_d_tlu_solver_type) :: tlusv

prepare the preconditioner: an ML with defaults, but with TLU solver at
tntermediate levels. All other parameters are at default wvalues.

call preclinit('ML', info)

call prechierarchy_build(a,desc_a,info)

nlv = preclget_nlevs()

call precset(tlusv, info,ilev=1,ilmax=max(1,nlv-1))
call prec’smoothers_build(a,desc_a,info)

7 ERROR HANDLING 43

7 Error Handling

The error handling in AMG4PSBLAS is based on the PSBLAS error handling. Error
conditions are signaled via an integer argument info; whenever an error condition is
detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error condition
to the user code, which will then take action, and whether an error message should be
printed. These options may be set by using the PSBLAS error handling routines; for
further details see the PSBLAS User’s Guide [20].

44 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

A License

AMGA4PSBLAS is freely distributable under the following copyright terms:

AMG4PSBLAS version 1.0
Algebraic MultiGrid Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 3.7)

(C) Copyright 2021

Pasqua D'Ambra IAC-CNR, IT
Fabio Durastante University of Pisa and IAC-CNR, IT
Salvatore Filippone University of Rome Tor-Vergata and IAC-CNR, IT

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"TAS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A LICENSE 45

AMGH4PSBLAS is an evolution of MLD2P4, whose license we reproduce here to
abide by its terms:

MLD2P4 version 2.2
Multilevel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 3.5)

(C) Copyright 2008-2018

Salvatore Filippone
Pasqua D'Ambra
Daniela di Serafino

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"TAS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

46

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

AMGA4PSBLAS is distributed together with (a small part) of the graph-matching

library MatchBox-P [9]. Per the license requirements, we reproduce the relative part

here.

[/ FRREA AR A A A AR KA A AR KA KKK KK oK KK KK K oK K ok oK ook KoK oK R ok oK ok ok ok oK R ok K ok ok kKoK ok K ok ok ok
//

// MatchboxP: A C++ library for approximate weighted matching

// Mahantesh Halappanavar (hala@pnnl.gov)

// Pacific Northwest National Laboratory

//

[/ FRAAAA A AR KA KKK A KKK K oK KK KK K oK K ok oK ook KoK K ok K ok oK ook ok ok ok K ok ok ok
//

// Copyright (2021) Battelle Memorial Institute

// A1l rights reserved.

//

// Redistribution and use in source and binary forms, with or without

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

>k >k >k 5k 3k 5k 5k ok 5k 5k 5k >k 5k 5k 5k %k >k >k >k 5k >k 5k 5k 5k >k >k >k %k %k >k >k >k >k 5k 5k 5k %k %k >k >k >k %k %k >k >k >k >k >k 5k 5k %k >k >k >k >k %k >k >k >k >k >k >k >k %k %k >k >k >k >k *k k *k

B CONTRIBUTOR COVENANT CODE OF CONDUCT 47

B Contributor Covenant Code of Conduct

Our Pledge We as members, contributors, and leaders pledge to make participation
in our community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality, personal
appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to
act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and
healthy community. Our Standards Examples of behavior that contributes to a positive
environment for our community include:

e Demonstrating empathy and kindness toward other people

¢ Being respectful of differing opinions, viewpoints, and experiences

Giving and gracefully accepting constructive feedback

Accepting responsibility and apologizing to those affected by our mistakes, and
learning from the experience

Focusing on what is best not just for us as individuals, but for the overall commu-
nity

Examples of unacceptable behavior include:

e The use of sexualized language or imagery, and sexual attention or advances of
any kind

e Trolling, insulting or derogatory comments, and personal or political attacks
e Public or private harassment

e Publishing others private information, such as a physical or email address, with-
out their explicit permission

e Other conduct which could reasonably be considered inappropriate in a profes-
sional setting

Enforcement Responsibilities Community leaders are responsible for clarifying and
enforcing our standards of acceptable behavior and will take appropriate and fair cor-
rective action in response to any behavior that they deem inappropriate, threatening,
offensive, or harmful. Community leaders have the right and responsibility to remove,
edit, or reject comments, commits, code, wiki edits, issues, and other contributions that
are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate. Scope This Code of Conduct applies within all community
spaces, and also applies when an individual is officially representing the community
in public spaces. Examples of representing our community include using an official
e-mail address, posting via an official social media account, or acting as an appointed

48 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

representative at an online or offline event. Enforcement Instances of abusive, harass-
ing, or otherwise unacceptable behavior may be reported to the community leaders
responsible for enforcement at eocoe@na.iac.cnr.it. All complaints will be reviewed and
investigated promptly and fairly. All community leaders are obligated to respect the
privacy and security of the reporter of any incident.

Enforcement Guidelines Community leaders will follow these Community Impact
Guidelines in determining the consequences for any action they deem in violation of
this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the behavior
was inappropriate. A public apology may be requested.

2. Warning
Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction
with the people involved, including unsolicited interaction with those enforcing
the Code of Conduct, for a specified period of time. This includes avoiding
interactions in community spaces as well as external channels like social media.
Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sus-
tained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communi-
cation with the community for a specified period of time. No public or private
interaction with the people involved, including unsolicited interaction with those
enforcing the Code of Conduct, is allowed during this period. Violating these
terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards,
including sustained inappropriate behavior, harassment of an individual, or
aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

mailto:eocoe@na.iac.cnr.it

B CONTRIBUTOR COVENANT CODE OF CONDUCT 49

Attribution This Code of Conduct is adapted from the Contributor Covenant, version
2.0, available at https:/ /www.contributor-covenant.org/version/2/0/code_of_conduct
html. Community Impact Guidelines were inspired by Mozillas code of conduct
enforcement ladder. For answers to common questions about this code of conduct, see
the FAQ at https:/ /www.contributor-covenant.org/faq. Translations are available at
https:/ /www.contributor-covenant.org/translations.

https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

50 MLD2P4 USER’S AND REFERENCE GUIDE

References

[1] A. Aprovitola, P. D’Ambra, F. Denaro, D. di Serafino, S. Filippone, Scalable algebraic
multilevel preconditioners with application to CFD, in Proc. of CFD 2008, LNCSE, 74,
(2010), 15-27.

[2] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L'Excellent, C. Weisbecker,
Improving multifrontal methods by means of block low-rank representations, SIAM
Journal on Scientific Computing, volume 37 (3), 2015, A1452-A1474. See also
http://mumps.enseeiht.fr.

[3] D. Bertaccini and S. Filippone, Sparse approximate inverse preconditioners on high
performance GPU platforms, Comput. Math. Appl., 71, (2016), no. 3, 693-711.

[4] M. Brezina, P. Vanék, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233-263.

[5] W. L. Briggs, V. E. Henson, S. FE. McCormick, A Multigrid Tutorial, Second Edition,
SIAM, 2000.

[6] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS to Build
Parallel Schwarz Preconditioners, in J. Dongarra, K. Madsen, J. Wasniewski, editors,
Proceedings of PARA 04 Workshop on State of the Art in Scientific Computing,
Lecture Notes in Computer Science, Springer, 2005, 593-602.

[7] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a package of
high-performance preconditioners for scientific and engineering applications, Applicable
Algebra in Engineering, Communications and Computing, 18 (3) 2007, 223-239.

[8] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General Sparse
Linear Systems, SIAM Journal on Scientific Computing, 21 (2), 1999, 792-797.

[9] U.. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and A. Pothen,
Distributed-memory parallel algorithms for matching and coloring, in PCO11 New
Trends in Parallel Computing and Optimization, IEEE International Symposium
on Parallel and Distributed Processing Workshops, IEEE CS, 2011.

[10] P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics, Elsevier
Science, 57 (11-12), 2007, 1181-1196.

[11] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Multilevel
Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans. Math.
Softw., 37(3), 2010, art. 30.

[12] P. D’Ambra and P.S. Vassilevski, Adaptive AMG with coarsening based on compatible
weighted matching, Computing and Visualization in Science, 16, (2013) 59-76.

REFERENCES 51

[13] P. D’Ambra, S. Filippone and P.S. Vassilevski, BootCMatch: a software package for
bootstrap AMG based on graph weighted matching, ACM Transactions on Mathemati-
cal Software, 44, (2018) 39:1-39:25.

[14] P. D’Ambra, F Durastante, S. Filippone, AMG preconditioners for Linear Solvers
towards Extreme Scale, 2020, arXiv:2006.16147v3.

[15] T. A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal Method
with a Column Pre-ordering Strategy, ACM Transactions on Mathematical Software,
30, 2004, 196-199. (See also http://www.cise.ufl.edu/ davis/)

[16] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li,]. W. H. Liu, A supernodal approach
to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20 (3),
1999, 720-755.

[17] J.]J. Dongarra, J. Du Croz, I. S. Duff, S. Hammarling, A set of Level 3 Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, 16 (1) 1990,
1-17.

[18] J.J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of FORTRAN
Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14
(1) 1988, 1-17.

[19] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse Linear
Algebra in a Fluid Dynamics Application Code on Linux Clusters, in Proc. of ParCo
2001, Parallel Computing, Advances and Current Issues, 2002.

[20] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference
Guide for the Parallel Sparse BLAS Library, 2012, available from
https://github.com/sfilippone/psblas3/tree/master/docs.

[21] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix Computations in
Fortran 2003. ACM Transactions on on Mathematical Software, 38 (4), 2012, art. 23.

[22] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Computation
on Sparse Matrices, ACM Transactions on Mathematical Software, 26 (4), 2000, 527-
550.

[23] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of algebraic
multigrid by aggregation, Numerical Lin. Algebra with Applications, 2016, 23:501-
518

[24] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT Press,
1998.

[25] C.L.Lawson, R.]. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Subprograms
for FORTRAN usage, ACM Transactions on Mathematical Software, 5 (3), 1979,
308-323.

https://arxiv.org/abs/2006.16147v3arXiv:2006.16147v2

52 MLD2P4 USER’S AND REFERENCE GUIDE

[26] X. S. Li, J. W. Demmel, SuperLU_DIST: A Scalable Distributed-memory Sparse Di-
rect Solver for Unsymmetric Linear Systems, ACM Transactions on Mathematical
Software, 29 (2), 2003, 110-140.

[27] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numerical Linear
Algebra with Applications, 15 (5), 2008, 473—487.

[28] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003.

[29] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[30] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

[31] K. Stiiben, An Introduction to Algebraic Multigrid, in A. Schiiller, U. Trottenberg,
C. Oosterlee, Multigrid, Academic Press, 2001.

[32] R.S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation Strate-
gies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of Super-
Computing 2000, Dallas, 2000.

[33] P. Vanék, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed Aggregation for
Second and Fourth Order Elliptic Problems, Computing, 56 (3) 1996, 179-196.

	AMG4PSBLAS User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building AMG4PSBLAS
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Getting Started
	4.1 Examples
	4.2 GPU example

	5 User Interface
	5.1 Method init
	5.2 Method set
	5.3 Method hierarchy_build
	5.4 Method smoothers_build
	5.5 Method build
	5.6 Method apply
	5.7 Method free
	5.8 Method descr
	5.9 Auxiliary Methods
	5.9.1 Method: dump
	5.9.2 Method: clone
	5.9.3 Method: sizeof
	5.9.4 Method: allocate_wrk
	5.9.5 Method: free_wrk

	6 Adding new smoother and solver objects to AMG4PSBLAS
	7 Error Handling
	A License
	B Contributor Covenant Code of Conduct
	References

