AMG4PSBLAS
User’s and Reference Guide

A guide for the Algebraic MultiGrid
Preconditioners Package based on PSBLAS

Pasqua D’Ambra
TIAC-CNR, Italy

Fabio Durastante
University of Pisa and IAC-CNR

Salvatore Filippone
University of Rome Tor-Vergata and IAC-CNR

Software version: 1.2
June 9th, 2025

This page intentionally left blank

Abstract

AMG4PSBLAS (ALGEBRAIC MULTIGRID PRECONDITIONERS PACKAGE BASED ON
PSBLAS) is a package of parallel algebraic multilevel preconditioners included in the
PSCToolkit (Parallel Sparse Computation Toolkit) software framework. It is a progress
of a software development project started in 2007, named MLD2P4, which originally
implemented a multilevel version of some domain decomposition preconditioners of
additive-Schwarz type, and was based on a parallel decoupled version of the well
known smoothed aggregation method to generate the multilevel hierarchy of coarser
matrices. In the last years, within the context of the EU-H2020 EoCoE project (Energy
Oriented Center of Excellence), the package was extended for including new algorithms
and functionalities for the setup and application new AMG preconditioners with the
final aims of improving efficiency and scalability when tens of thousands cores are
used, and of boosting reliability in dealing with general symmetric positive definite
linear systems. Due to the significant number of changes and the increase in scope, we
decided to rename the package as AMG4PSBLAS.

AMG4PSBLAS has been designed to provide scalable and easy-to-use precondition-
ers in the context of the PSBLAS (Parallel Sparse Basic Linear Algebra Subprograms)
computational framework and can be used in conjuction with the Krylov solvers avail-
able in this framework. Our package is based on a completely algebraic approach;
therefore users level interfaces assume that the system matrix and preconditioners are
represented as PSBLAS distributed sparse matrices. AMG4PSBLAS enables the user to
easily specify different features of an algebraic multilevel preconditioner, thus allowing
to experiment with different preconditioners for the problem and parallel computers at
hand.

The package employs object-oriented design techniques in Fortran 2003, with in-
terfaces to additional third party libraries such as MUMPS, UMFPACK, SuperLU, and
SuperLU_Dist, which can be exploited in building multilevel preconditioners. The
parallel implementation is based on a Single Program Multiple Data (SPMD) paradigm;
the inter-process communication is based on MPI and is managed mainly through
PSBLAS.

This guide provides a brief description of the functionalities and the user interface
of AMG4PSBLAS.

This page intentionally left blank

Contents
Abstract
1 General Overview
2 Code Distribution
3 Configuring and Building AMG4PSBLAS
3.1 Prerequisites
3.2 Optional third party libraries
3.3 Configurationoptions
34 Bugreporting
3.5 Exampleandtestprograms
4 Getting Started
41 Examples
42 GPUexample
5 User Interface
51 Methodinit e
52 Methodset e
53 Method hierarchy build,
5.4 Method smoothers build,
55 Methodbuild
56 Methodapply
5.7 Method free e
58 Method descr e
59 AuxiliaryMethods oL
591 Method:dump
59.2 Method:clone
59.3 Method: sizeof
59.4 Method: allocatewrk
595 Method: deallocate.wrk
6 Adding new smoother and solver objects to AMG4PSBLAS
7 Error Handling
A License
B Contributor Covenant Code of Conduct

References

iii

43

45

46

49

52

This page intentionally left blank

1 GENERAL OVERVIEW 1

1 General Overview

The ALGEBRAIC MULTIGRID PRECONDITIONERS PACKAGE BASED ON PSBLAS (AMG-
4PSBLAS) provides parallel Algebraic MultiGrid (AMG) preconditioners (see, e.g.,
[5, 33]), to be used in the iterative solution of linear systems,

Ax = b, (1)

where A is a square, real or complex, sparse symmetric positive definite (s.p.d) matrix.

The preconditioners implemented in AMG4PSBLAS are obtained by combining 3
different types of AMG cycles with smoothers and coarsest-level solvers. Available
multigrid cycles include the V-, W-, and a version of a Krylov-type cycle (K-cycle) [5, 29];
they can be combined with Jacobi, hybrid forward/backward Gauss-Seidel, block-
Jacobi and additive Schwarz smoothers with various versions of local incomplete
factorizations and approximate inverses on the blocks. The Jacobi, block-Jacobi and
Gauss-Seidel smoothers are also available in the ¢; version [14].

An algebraic approach is used to generate a hierarchy of coarse-level matrices and
operators, without explicitly using any information on the geometry of the original
problem, e.g., the discretization of a PDE. To this end, two different coarsening strategies,
based on aggregation, are available:

¢ a decoupled version of the smoothed aggregation procedure proposed in [4, 35],
and already included in the previous versions of the package [7, 11];

* a coupled, parallel implementation of the Coarsening based on Compatible
Weighted Matching introduced in [12, 13] and described in detail in [14];

Either exact or approximate solvers can be used on the coarsest-level system. We
provide interfaces to various parallel and sequential sparse LU factorizations from
external packages, sequential native incomplete LU and approximate inverse factor-
izations, parallel weighted Jacobi, hybrid Gauss-Seidel, block-Jacobi solvers and calls
to preconditioned Krylov methods; all smoothers can be also exploited as one-level
preconditioners.

AMG4PSBLAS is written in Fortran 2003, following an object-oriented design
through the exploitation of features such as abstract data type creation, type extension,
functional overloading, and dynamic memory management. The parallel implementa-
tion is based on a Single Program Multiple Data (SPMD) paradigm. Single and double
precision implementations of AMG4PSBLAS are available for both the real and the
complex case, which can be used through a single interface.

AMG4PSBLAS has been designed to implement scalable and easy-to-use multilevel
preconditioners in the context of the PSBLAS (Parallel Sparse BLAS) computational
framework [23, 22]. PSBLAS provides basic linear algebra operators and data man-
agement facilities for distributed sparse matrices, kernels for sequential incomplete
factorizations needed for the parallel block-Jacobi and additive Schwarz smoothers,
and parallel Krylov solvers which can be used with the AMG4PSBLAS preconditioners.
The choice of PSBLAS has been mainly motivated by the need of having a portable

2 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

and efficient software infrastructure implementing “de facto” standard parallel sparse
linear algebra kernels, to pursue goals such as performance, portability, modularity ed
extensibility in the development of the preconditioner package. On the other hand, the
implementation of AMG4PSBLAS, which was driven by the need to face the exascale
challenge, has led to some important revisions and extentions of the PSBLAS infras-
tructure. The inter-process comunication required by AMG4PSBLAS is encapsulated
in the PSBLAS routines; therefore, AMG4PSBLAS can be run on any parallel machine
where PSBLAS implementations are available. In the most recent version of PSBLAS
(release 3.7), a plug-in for GPU is included; it includes CUDA versions of main vector
operations and of sparse matrix-vector multiplication, so that Krylov methods coupled
with AMG4PSBLAS preconditioners relying on Jacobi and block-Jacobi smoothers with
sparse approximate inverses on the blocks can be efficiently executed on cluster of
GPUs.

AMG4PSBLAS has a layered and modular software architecture where three main
layers can be identified. The lower layer consists of the PSBLAS kernels, the middle one
implements the construction and application phases of the preconditioners, and the
upper one provides a uniform interface to all the preconditioners. This architecture al-
lows for different levels of use of the package: few black-box routines at the upper layer
allow all users to easily build and apply any preconditioner available in AMG4PSBLAS;
facilities are also available allowing expert users to extend the set of smoothers and
solvers for building new versions of the preconditioners (see Section 6).

This guide is organized as follows. General information on the distribution of the
source code is reported in Section 2, while details on the configuration and installation
of the package are given in Section 3. The basics for building and applying the precon-
ditioners with the Krylov solvers implemented in PSBLAS are reported in Section 4,
where the Fortran codes of a few sample programs are also shown. A reference guide
for the user interface routines is provided in Section 5. Information on the extension of
the package through the addition of new smoothers and solvers is reported in Section 6.
The error handling mechanism used by the package is briefly described in Section 7.
The copyright terms concerning the distribution and modification of AMG4PSBLAS
are reported in Appendix A.

2 CODE DISTRIBUTION 3

2 Code Distribution

AMGA4PSBLAS is available from the web site
https:/ /psctoolkit.github.io/products /amg4psblas/

where contact points for further information can be also found. The software is available
under a modified BSD license, as specified in Appendix A; please note that some of
the optional third party libraries may be licensed under a different and more stringent
license, most notably the GPL, and this should be taken into account when treating
derived works.

The library defines a version string with the constant

amg_version_string_

whose current value is 1.2.

Development team

The main development team for AMG4PSBLAS is:
¢ Pasqua D’Ambra, IAC-CNR, IT;
¢ Fabio Durastante, University of Pisa and IAC-CNR, IT;
¢ Salvatore Filippone, University of Rome Tor-Vergata and IAC-CNR, IT;

Other contributors:

¢ Luca Pepe Sciarria; e Zaak Beekman;
¢ Andea Di Iorio; e Ambra Abdullahi Hassan.
Citing AMG4PSBLAS

When using the library, please cite the following:

@article {MR4331965,
AUTHOR = {D'Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatorel,
TITLE = {A{MG} preconditioners for linear solvers towards extreme
scale},
JOURNAL = {SIAM J. Sci. Comput.},
FJOURNAL = {SIAM Journal on Scientific Computing},
VOLUME = {43},
YEAR = {2021},
NUMBER = {5},
PAGES = {S679--S703},
ISSN = {1064-8275,1095-7197},

https://psctoolkit.github.io/products/amg4psblas/

4 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

MRCLASS = {65F50 (65F08 65F10 65N55 65Y05)},
MRNUMBER = {4331965},

MRREVIEWER = {Yongzhong\ Song},

DOI = {10.1137/20M134914X},

@Misc{psctoolkit-web-page,
author = {D'Ambra, Pasqua and Durastante, Fabio and Filippone, Salvatore}l},
title = {{PSCToolkit} {W}eb page},
url = {https://psctoolkit.github.io/7},
howpublished = {\url{https://psctoolkit.github.io/}},
year = {2021}

3 CONFIGURING AND BUILDING AMG4PSBLAS 5

3 Configuring and Building AMG4PSBLAS

In order to build AMG4PSBLAS it is necessary to set up a Makefile with appropriate
system-dependent variables; this is done by means of the configure script. The dis-
tribution also includes the autoconf and automake sources employed to generate the
script, but usually this is not needed to build the software.

AMG4PSBLAS is implemented almost entirely in Fortran 2003, with some interfaces
to external libraries in C; the Fortran compiler must support the Fortran 2003 standard
plus the extension MOLD= feature, which enhances the usability of ALLOCATE. Most
Fortran compilers provide this feature; in particular, this is supported by the GNU
Fortran compiler, for which we recommend to use at least version 4.8. The software
defines data types and interfaces for real and complex data, in both single and double
precision.

Building AMG4PSBLAS requires some base libraries (see Section 3.1); interfaces to
optional third-party libraries, which extend the functionalities of AMG4PSBLAS (see
Section 3.2), are also available. A number of Linux distributions (e.g., Ubuntu, Fedora,
CentOS) provide precompiled packages for the prerequisite and optional software. In
many cases these packages are split between a runtime part and a “developer” part; in
order to build AMG4PSBLAS you need both. A description of the base and optional
software used by AMG4PSBLAS is given in the next sections.

3.1 Prerequisites
The following base libraries are needed:

BLAS [18, 19, 26] Many vendors provide optimized versions of BLAS; if no vendor ver-
sion is available for a given platform, the ATLAS software (math-atlas.sourceforge
net) may be employed. The reference BLAS from Netlib (www.netlib.org/blas)
are meant to define the standard behaviour of the BLAS interface, so they are not
optimized for any particular platform, and should only be used as a last resort.
Note that BLAS computations form a relatively small part of the AMG4PSBLAS/-
PSBLAS; however they are critical when using preconditioners based on the
MUMPS, UMFPACK or SuperLU third party libraries. UMFPACK requires a full
LAPACK library; our experience is that configuring ATLAS for building full LA-
PACK does not always work in the expected way. Our advice is first to download
the LAPACK tarfile from www.netlib.org/lapack and install it independently of
ATLAS. In this case, you need to modify the OPTS and NOOPT definitions for
including -fPIC compilation option in the make.inc file of the LAPACK library.

MPI [25, 32] A version of MPI is available on most high-performance computing
systems.

PSBLAS [21, 23] Parallel Sparse BLAS (PSBLAS) is available from psctoolkit.github.io/
products/psblas/; version 3.7.0 (or later) is required. Indeed, all the prerequisites
listed so far are also prerequisites of PSBLAS.

http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.netlib.org/blas
http://www.netlib.org/lapack
https://psctoolkit.github.io/products/psblas/
https://psctoolkit.github.io/products/psblas/

6 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

Please note that the four previous libraries must have Fortran interfaces compatible
with AMG4PSBLAS; usually this means that they should all be built with the same
compiler being used for AMG4PSBLAS.

If you want to use the PSBLAS support for NVIDIA GPUs, you will also need a
working version of the CUDA Toolkit that is compatible with the compiler choice made
to compile PSBLAS and AMG4PSBLAS. After that you will need to have configured
and compiled the PSBLAS library with the options:

./configure --enable-cuda --with-cudadir=${CUDA_HOME} --with-cudacc=xx,yy,zz

Previous versions required you to have the auxiliary libraries SPGPU and PSBLAS-EXT
compiled, this is no longer necessary because they have been integrated into PSBLAS
and are compiled by activating the previous flags during configuration. See also Sec 4.2.

3.2 Optional third party libraries

We provide interfaces to the following third-party software libraries; note that these
are optional, but if you enable them some defaults for multilevel preconditioners may
change to reflect their presence.

UMFPACK [16] A sparse LU factorization package included in the SuiteSparse library,
available from faculty.cse.tamu.edu/davis/suitesparse.html; it provides se-
quential factorization and triangular system solution for double precision real and
complex data. We tested version 4.5.4 of SuiteSparse. Note that for configuring
SuiteSparse you should provide the right path to the BLAS and LAPACK libraries
in the SuiteSparse_config/SuiteSparse_config.mk file.

MUMPS [2] A sparse LU factorization package available from mumps . enseeiht . fr; it
provides sequential and parallel factorizations and triangular system solution for
single and double precision, real and complex data. We tested versions 4.10.0 and
5.0.1.

SuperLU [17] A sparse LU factorization package available from crd.1bl.gov/~xiaoye/
SuperLU/; it provides sequential factorization and triangular system solution for
single and double precision, real and complex data. We tested versions 4.3 and
5.0. If you installed BLAS from ATLAS, remember to define the BLASLIB variable
in the make.inc file.

SuperLU_Dist [28] A sparse LU factorization package available from the same site
as SuperLU; it provides parallel factorization and triangular system solution for
double precision real and complex data. We tested versions 3.3 and 4.2. If you
installed BLAS from ATLAS, remember to define the BLASLIB variable in the
make.inc file and to add the -std=c99 option to the C compiler options. Note
that this library requires the ParMETIS library for parallel graph partitioning
and fill-reducing matrix ordering, available from glaros.dtc.umn.edu/gkhome/
metis/parmetis/overview.

faculty.cse.tamu.edu/davis/suitesparse.html
mumps.enseeiht.fr
crd.lbl.gov/~xiaoye/SuperLU/
crd.lbl.gov/~xiaoye/SuperLU/
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
glaros.dtc.umn.edu/gkhome/metis/parmetis/overview

3 CONFIGURING AND BUILDING AMG4PSBLAS 7

3.3 Configuration options

In order to build AMGA4PSBLAS, the first step is to use the configure script in the main
directory to generate the necessary makefile.
As a minimal example consider the following;:

./configure --with-psblas=PSB-INSTALL-DIR

which assumes that the various MPI compilers and support libraries are available in the
standard directories on the system, and specifies only the PSBLAS install directory (note
that the latter directory must be specified with an absolute path). The full set of options
may be looked at by issuing the command ./configure --help, which produces:

“configure' configures AMG4PSBLAS 1.0.0 to adapt to many kinds of systems.
Usage: ./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE. See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.

Configuration:

-h, --help display this help and exit
——help=short display options specific to this package
--help=recursive display the short help of all the included packages

-V, --version display version information and exit

-q, ——quiet, --silent do not print “checking ...' messages
--cache-file=FILE cache test results in FILE [disabled]

-C, --config-cache alias for “--cache-file=config.cache'

-n, ——no-create do not create output files
—--srcdir=DIR find the sources in DIR [configure dir or ~..']

Installation directories:

—--prefix=PREFIX install architecture-independent files in PREFIX
[/usr/locall

--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX
[PREFIX]

By default, "make install' will install all the files in
“/usr/local/bin', */usr/local/lib' etc. You can specify

an installation prefix other than ~/usr/local' using ~--prefix',
for instance ~--prefix=$HOME'.

For better control, use the options below.
Fine tuning of the installation directories:

--bindir=DIR user executables [EPREFIX/bin]
—--sbindir=DIR system admin executables [EPREFIX/sbin]

—-libexecdir=DIR
—--sysconfdir=DIR
—-sharedstatedir=DIR
< [PREFIX/com]
—-localstatedir=DIR
—-1ibdir=DIR
—-includedir=DIR
—-oldincludedir=DIR
——-datarootdir=DIR
— [PREFIX/share]
—-datadir=DIR

< [DATAROOTDIR]
——infodir=DIR
—-localedir=DIR
—-mandir=DIR
—--docdir=DIR
—-htmldir=DIR
—-dvidir=DIR
--pdfdir=DIR
--psdir=DIR

Program names:
—-—-program-prefix=PREFIX
<~ names
--program-suffix=SUFFIX

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

program executables [EPREFIX/libexec]
read-only single-machine data [PREFIX/etc]
modifiable architecture-independent data

modifiable single-machine data [PREFIX/var]
object code libraries [EPREFIX/1ib]

C header files [PREFIX/include]

C header files for non-gcc [/usr/include]
read-only arch.-independent data root

read-only architecture-independent data

info documentation [DATAROOTDIR/infol
locale-dependent data [DATAROOTDIR/locale]

man documentation [DATAROOTDIR/man]
documentation root [DATAROOTDIR/doc/amgépsblas]
html documentation [DOCDIR]

dvi documentation [DOCDIR]

pdf documentation [DOCDIR]

ps documentation [DOCDIR]

prepend PREFIX to installed program

append SUFFIX to installed program names

—--program-transform-name=PROGRAM run sed PROGRAM on installed program

— names

Optional Features:

--disable-option-checking ignore unrecognized --enable/--with options

--disable-FEATURE

< --enable-FEATURE=no)

-—enable-FEATURE [=ARG]
——-enable-silent-rules
—-disable-silent-rules

do not include FEATURE (same as

include FEATURE [ARG=yes]
less verbose build output (undo: "make V=1")
verbose build output (undo: "make V=0")

--enable-dependency-tracking

do not reject slow dependency extractors

--disable-dependency-tracking

——enable-serial

Optional Packages:
--with-PACKAGE [=ARG]
--without-PACKAGE
-—with-psblas=DIR

speeds up one-time build
Specify whether to enable a fake mpi library to run
in serial mode.

use PACKAGE [ARG=yes]

do not use PACKAGE (same as --with-PACKAGE=no)
The install directory for PSBLAS, for example,
--with-psblas=/opt/packages/psblas-3.5

--with-psblas-incdir=DIR

Specify the directory for PSBLAS C includes.

3 CONFIGURING AND BUILDING AMG4PSBLAS

--with-psblas-moddir=DIR

Specify the directory for PSBLAS Fortran modules.
--with-psblas-1ibdir=DIR

Specify the directory for PSBLAS library.

--with-ccopt additional [CCOPT] flags to be added: will prepend
to [CCOPT]

—--with-fcopt additional [FCOPT] flags to be added: will prepend
to [FCOPT]

--with-1libs List additional link flags here. For example,

--with-libs=-1special_system_lib or
--with-libs=-L/path/to/libs

—--with-clibs additional [CLIBS] flags to be added: will prepend
to [CLIBS]

--with-flibs additional [FLIBS] flags to be added: will prepend
to [FLIBS]

--with-library-path additional [LIBRARYPATH] flags to be added: will
prepend to [LIBRARYPATH]

--with-include-path additional [INCLUDEPATH] flags to be added: will
prepend to [INCLUDEPATH]

--with-module-path additional [MODULE_PATH] flags to be added: will
prepend to [MODULE_PATH]

--with-extra-libs List additional link flags here. For example,

--with-extra-libs=-1lspecial_system_lib or
--with-extra-libs=-L/path/to/libs

--with-blas=<1ib> use BLAS library <lib>
--with-blasdir=<dir> search for BLAS library in <dir>
--with-lapack=<1ib> use LAPACK library <1ib>

--with-mumps=LIBNAME Specify the libname for MUMPS. Default: autodetect
with minimum "-lmumps_common -lpord"
--with-mumpsdir=DIR Specify the directory for MUMPS library and
includes. Note: you will need to add auxiliary
libraries with --extra-libs; this depends on how
MUMPS was configured and installed, at a minimum
— you
will need SCALAPACK and BLAS
--with-mumpsincdir=DIR Specify the directory for MUMPS includes.
--with-mumpsmoddir=DIR Specify the directory for MUMPS Fortran modules.
--with-mumpslibdir=DIR Specify the directory for MUMPS library.
--with-umfpack=LIBNAME Specify the library name for UMFPACK and its
— support

libraries. Default: "-lumfpack -lamd"
--with-umfpackdir=DIR Specify the directory for UMFPACK library and
includes.

--with-umfpackincdir=DIR

Specify the directory for UMFPACK includes.
--with-umfpacklibdir=DIR

Specify the directory for UMFPACK library.
--with-superlu=LIBNAME Specify the library name for SUPERLU library.

Default: "-lsuperlu"

10 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

—-—with-superludir=DIR Specify the directory for SUPERLU library and
includes.
--with-superluincdir=DIR
Specify the directory for SUPERLU includes.
--with-superlulibdir=DIR
Specify the directory for SUPERLU library.
—--with-superludist=LIBNAME
Specify the libname for SUPERLUDIST library.
Requires you also specify SuperLU. Default:
"-lsuperlu_dist"
--with-superludistdir=DIR
Specify the directory for SUPERLUDIST library and
includes.
--with-superludistincdir=DIR
Specify the directory for SUPERLUDIST includes.
--with-superludistlibdir=DIR
Specify the directory for SUPERLUDIST library.

Some influential environment variables:

FC Fortran compiler command

FCFLAGS Fortran compiler flags

LDFLAGS linker flags, e.g. -L<1lib dir> if you have libraries in a
nonstandard directory <lib dir>

LIBS libraries to pass to the linker, e.g. -1<library>

cC C compiler command

CFLAGS C compiler flags

CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include dir> if
you have headers in a nonstandard directory <include dir>

MPICC MPI C compiler command
MPIFC MPI Fortran compiler command
CPP C preprocessor

Use these variables to override the choices made by ~“configure' or to help
it to find libraries and programs with nonstandard names/locations.

Report bugs to <https://github.com/psctoolkit/psctoolkit/issues>.

For instance, if a user has built and installed PSBLAS 3.7 under the /opt directory and
is using the SuiteSparse package (which includes UMFPACK), then AMG4PSBLAS
might be configured with:

./configure --with-psblas=/opt/psblas-3.7/
— -—-with-umfpackincdir=/usr/include/suitesparse/

Once the configure script has completed execution, it will have generated the file
Make . inc which will then be used by all Makefiles in the directory tree; this file will be
copied in the install directory under the name Make . inc . AMG4PSBLAS.

To use the MUMPS solver package, the user has to add the appropriate options

3 CONFIGURING AND BUILDING AMG4PSBLAS 11

to the configure script; by default we are looking for the libraries ~1dmumps -1lsmumps
-lzmumps -lcmumps -mumps_common -lpord. MUMPS often uses additional pack-
ages such as ScaLAPACK, ParMETIS, SCOTCH, as well as enabling OpenMP; in such
cases it is necessary to add linker options with the --with-extra-1ibs configure op-
tion.
To build the library the user will now enter

make
followed (optionally) by

make install

3.4 Bugreporting

If you find any bugs in our codes, please report them through our issues page on

https://github.com/psctoolkit/psctoolkit/issues

To enable us to track the bug, please provide a log from the failing application, the
test conditions, and ideally a self-contained test program reproducing the issue.

3.5 Example and test programs

The package contains a samples directory, divided in two subdirs simple and advanced;
both of them are further divided into fileread and pdegen subdirectories. Their
purpose is as follows:

simple contains a set of simple example programs with a predefined choice of precon-
ditioners, selectable via integer values. These are intended to get acquainted with
the multilevel preconditioners available in AMG4PSBLAS.

advanced contains a set of more sophisticated examples that will allow the user, via
the input files in the runs subdirectories, to experiment with the full range of
preconditioners implemented in the package.

The fileread directories contain sample programs that read sparse matrices from
files, according to the Matrix Market or the Harwell-Boeing storage format; the pdegen
programs generate matrices in full parallel mode from the discretization of a sample
partial differential equation.

https://github.com/psctoolkit/psctoolkit/issues

12 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

4 Getting Started

This section describes the basics for building and applying AMG4PSBLAS one-level and
multilevel (i.e., AMG) preconditioners with the Krylov solvers included in PSBLAS [21].
The following steps are required:

1. Declare the preconditioner data structure. It is a derived data type, amg_xprec_ type,
where x may be s, d, ¢ or z, according to the basic data type of the sparse matrix
(s = real single precision; d = real double precision; c = complex single precision;
z = complex double precision). This data structure is accessed by the user only
through the AMG4PSBLAS routines, following an object-oriented approach.

2. Allocate and initialize the preconditioner data structure, according to a preconditioner type
chosen by the user. This is performed by the routine init, which also sets defaults
for each preconditioner type selected by the user. The preconditioner types and
the defaults associated with them are given in Table 1, where the strings used by
init to identify the preconditioner types are also given. Note that these strings
are valid also if uppercase letters are substituted by corresponding lowercase
ones.

3. Modify the selected preconditioner type, by properly setting preconditioner parameters.
This is performed by the routine set. This routine must be called if the user
wants to modify the default values of the parameters associated with the selected
preconditioner type, to obtain a variant of that preconditioner. Examples of use of
set are given in Section 4.1; a complete list of all the preconditioner parameters
and their allowed and default values is provided in Section 5, Tables 2-8.

4. Build the preconditioner for a given matrix. If the selected preconditioner is multilevel,
then two steps must be performed, as specified next.

4.1 Build the AMG hierarchy for a given matrix. This is performed by the routine
hierarchy_build.

4.2 Build the preconditioner for a given matrix. This is performed by the routine
smoothers_build.

If the selected preconditioner is one-level, it is built in a single step, performed by
the routine bld.

5. Apply the preconditioner at each iteration of a Krylov solver. This is performed by the
method apply. When using the PSBLAS Krylov solvers, this step is completely
transparent to the user, since apply is called by the PSBLAS routine implementing
the Krylov solver (psb_krylov).

6. Free the preconditioner data structure. This is performed by the routine free. This
step is complementary to step 1 and should be performed when the preconditioner
is no more used.

4 GETTING STARTED

13

All the previous routines are available as methods of the preconditioner object. A
detailed description of them is given in Section 5. Examples showing the basic use of
AMGA4PSBLAS are reported in Section 4.1.

TYPE STRING DEFAULT PRECONDITIONER
No preconditioner 'NONE' Considered to use the PSBLAS Krylov
solvers with no preconditioner.
Diagonal 'DIAG', Diagonal preconditioner. For any zero
"JACOBI', | diagonal entry of the matrix to be pre-
'L1-JACOBI'| conditioned, the corresponding entry of
the preconditioner is set to 1.
Gauss-Seidel 'GS"', Hybrid Gauss-Seidel (forward), that is,
'L1-GS' global block Jacobi with Gauss-Seidel as
local solver.
Symmetrized Gauss-Seidel | 'FBGS', Symmetrized hybrid Gauss-Seidel, that
'L1-FBGS' | is, forward Gauss-Seidel followed by
backward Gauss-Seidel.
Block Jacobi 'BJAC', Block-Jacobi with ILU(0) on the local
'L1-BJAC!' blocks.
Additive Schwarz 'AS' Additive Schwarz (AS), with overlap 1
and ILU(0) on the local blocks.
Multilevel 'ML' V-cycle with one hybrid forward Gauss-

Seidel (GS) sweep as pre-smoother and
one hybrid backward GS sweep as post-
smoother, decoupled smoothed aggre-
gation as coarsening algorithm, and LU
(plus triangular solve) as coarsest-level
solver. See the default values in Tables 2-
8 for further details of the preconditioner.

Table 1: Preconditioner types, corresponding strings and default choices.

Note that the module amg_prec_mod, containing the definition of the preconditioner
data type and the interfaces to the routines of AMG4PSBLAS, must be used in any
program calling such routines. The modules psb_base_mod, for the sparse matrix and
communication descriptor data types, and psb_krylov_mod, for interfacing with the
Krylov solvers, must be also used (see Section 4.1).

Remark 1. Coarsest-level solvers based on the LU factorization, such as those
implemented in UMFPACK, MUMPS, SuperLU, and SuperLU _Dist, usually lead to
smaller numbers of preconditioned Krylov iterations than inexact solvers, when the
linear system comes from a standard discretization of basic scalar elliptic PDE prob-
lems. However, this does not necessarily correspond to the shortest execution time on

14 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

parallel computers.

4.1 Examples

The code reported in Figure 1 shows how to set and apply the default multilevel precon-
ditioner available in the real double precision version of AMG4PSBLAS (see Table 1).
This preconditioner is chosen by simply specifying 'ML' as the second argument of
P%init (a call to P%set is not needed) and is applied with the CG solver provided by
PSBLAS (the matrix of the system to be solved is assumed to be positive definite). As
previously observed, the modules psb_base_mod, amg_prec_mod and psb_krylov_mod
must be used by the example program.

The part of the code dealing with reading and assembling the sparse matrix and the
right-hand side vector and the deallocation of the relevant data structures, performed
through the PSBLAS routines for sparse matrix and vector management, is not reported
here for the sake of conciseness. The complete code can be found in the example
program file amg_dexample_ml.£90, in the directory samples/simple/fileread of the
AMGH4PSBLAS implementation (see Section 3.5). A sample test problem along with the
relevant input data is available in samples/simple/fileread/runs. For details on the
use of the PSBLAS routines, see the PSBLAS User’s Guide [21].

The setup and application of the default multilevel preconditioner for the real single
precision and the complex, single and double precision, versions are obtained with
straightforward modifications of the previous example (see Section 5 for details). If these
versions are installed, the corresponding codes are available in samples/simple/file-
read.

Different versions of the multilevel preconditioner can be obtained by changing
the default values of the preconditioner parameters. The code reported in Figure 2
shows how to set a V-cycle preconditioner which applies 1 block-Jacobi sweep as pre-
and post-smoother, and solves the coarsest-level system with 8 block-Jacobi sweeps.
Note that the ILU(0) factorization (plus triangular solve) is used as local solver for
the block-Jacobi sweeps, since this is the default associated with block-Jacobi and set
by P%init. Furthermore, specifying block-Jacobi as coarsest-level solver implies that
the coarsest-level matrix is distributed among the processes. Figure 3 shows how to
set a W-cycle preconditioner using the Coarsening based on Compatible Weighted
Matching, aggregates of size at most 8 and smoothed prolongators. It applies 2 hybrid
Gauss-Seidel sweeps as pre- and post-smoother, and solves the coarsest-level system
with the parallel flexible Conjugate Gradient method (KRM) coupled with the block-
Jacobi preconditioner having ILU(0) on the blocks. Default parameters are used for
stopping criterion of the coarsest solver. Note that, also in this case, specifying KRM
as coarsest-level solver implies that the coarsest-level matrix is distributed among the
processes.

The code fragments shown in Figures 2 and 3 are included in the example program
file amg_dexample_ml.£90 too.

Finally, Figure 4 shows the setup of a one-level additive Schwarz preconditioner,
i.e., RAS with overlap 2. Note also that a Krylov method different from CG must be

4 GETTING STARTED

use psb_base_mod
use amg_prec_mod
use psb_krylov_mod

sparse matriz
type (psb_dspmat_type) :: A
sparse matrix descriptor

type (psb_desc_type) :: desc_A
preconditioner
type (amg_dprec_type) :: P

right-hand side and solution vectors
type(psb_d_vect_type) :: b, x

tnitialize the parallel environment
call psb_init(ctxt)
call psb_info(ctxt,iam,np)

read and assemble the spd matrixz A and the right-hand side b
using PSBLAS routines for sparse matriz / vector management

tnitialize the default multilevel preconditioner,
with basic smoothed aggregation, 1 hybrid forward/backward
GS sweep as pre/post-smoother and UMFPACK as coarsest-level

solver
call P}init(ctxt,'ML',info)

build the preconditioner

call P}hierarchy_build(A,desc_A,info)
call PY%smoothers_build(A,desc_A,info)

set the solver parameters and the initial guess

solve Az=b with preconditioned FCG
call psb_krylov('FCG',A,P,b,x,tol,desc_A,info)

deallocate the preconditioner
call PY%free(info)

deallocate other data structures

extt the parallel environment
call psb_exit(ctxt)

stop

15

Listing 1: setup and application of the default multilevel preconditioner (example 1).

16 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

used to solve the preconditioned system, since the preconditione in nonsymmetric. The
corresponding example program is available in the file amg_dexample_1lev.£90.

For all the previous preconditioners, example programs where the sparse matrix
and the right-hand side are generated by discretizing a PDE with Dirichlet boundary
conditions are also available in the directory samples/simple/pdegen.

! butld a V-cycle preconditioner with 1 block-Jacobi sweep (with

! ILU(0) on the blocks) as pre- and post-smoother, and 8 block-Jacobt
! sweeps (with ILU(O) on the blocks) as coarsest-level solver

call P¥%init(ctxt, 'ML',info)

call PY%set('SMOOTHER_TYPE', 'BJAC',info)

call P%set('COARSE_SOLVE', 'BJAC',info)

call PYset('COARSE_SWEEPS',8,info)

call P}hierarchy_build(A,desc_A,info)

call PY%smoothers_build(A,desc_A,info)

Listing 2: setup of a multilevel preconditioner based on the default decoupled coarsen-
ing

Ibuild a W-cycle using the coupled coarsening based on weighted matching,
laggregates of size at most 8 and smoothed prolongators,

12 hybrid Gauss-Seidel sweeps as pre- and post-smoother,

land parallel flexible Conjugate Gradient coupled with the block-Jacobi
Ipreconditioner having ILU(0) on the blocks as coarsest solver.

call P%init(ctxt,'ML',info)

call P)set('PAR_AGGR_ALG', 'COUPLED',info)

call P)set('AGGR_TYPE', 'MATCHBOXP',info)

call PYset('AGGR_SIZE',8,info)

call PYset('ML_CYCLE', 'WCYCLE',info)

call PYset('SMOOTHER_TYPE', 'FBGS',info)

call PY%set('SMOOTHER_SWEEPS',2,info)

call P)set('COARSE_SOLVE','KRM',info)

call PYset('COARSE_MAT', 'DIST',info)

call PYset('KRM_METHOD', 'FCG',info)

call P}hierarchy_build(A,desc_A,info)

call PYsmoothers_build(A,desc_A,info)

Listing 3: setup of a multilevel preconditioner based on the coupled coarsening using
weighted matching

4.2 GPU example

The code discussed here shows how to set up a program exploiting the combined GPU
capabilities of PSBLAS and AMG4PSBLAS. The code example is available in the source
distribution directory amg4psblas/examples/gpu.

First of all, we need to include the appropriate modules and declare some auxiliary
variables: In this particular example we are choosing to employ a HLG data structure for
sparse matrices on GPUs; for more information please refer to the PSBLAS users’ guide.

4 GETTING STARTED 17

! build a one-level RAS with overlap 2 and ILU(0) on the local blocks.
call P%init(ctxt,'AS',info)
call PY%set('SUB_OVR',2,info)
call PY%build(A,desc_A,info)

! solve Az=b with preconditioned BiCGSTAB
call psb_krylov('BICGSTAB',A,P,b,x,tol,desc_A,info)

Listing 4: setup of a one-level Schwarz preconditioner.

program amg_dexample_gpu
use psb_base_mod
use amg_prec_mod
use psb_krylov_mod
use psb_util_mod
use psb_gpu_mod
use data_input
use amg_d_pde_mod
implicit none
! GPU wvartables
type(psb_d_hlg_sparse_mat) :: agmold
type (psb_d_vect_gpu) :: vgmold
type (psb_i_vect_gpu) :: igmold

Listing 5: setup of a GPU-enabled test program part one.

We then have to initialize the GPU environment, and pass the appropriate MOLD
variables to the build methods (see also the PSBLAS users’ guide). Finally, we convert

call psb_init(ctxt)

call psb_info(ctxt,iam,np)

!

! BEWARE: <f you have NGPUS per node, the default s to

! attach to mod(IAM,NGPUS)

!

call psb_gpu_init(ictxt)

t1 = psb_wtime()

call precsmoothers_build(a,desc_a,info, amold=agmold, vmold=vgmold,
— imold=igmold)

Listing 6: setup of a GPU-enabled test program part two.

18 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

the input matrix, the descriptor and the vectors to use a GPU-enabled internal storage
format. We then preallocate the preconditioner workspace before entering the Krylov
method. At the end of the code, we close the GPU environment

call desc_a%cnv(mold=igmold)

call ajcscnv(info,mold=agmold)

call psb_geasb(x,desc_a,info,mold=vgmold)
call psb_geasb(b,desc_a,info,mold=vgmold)

call psb_barrier(ctxt)

call preciallocate_wrk(info)

tl = psb_wtime()

call psb_krylov(s_choicefkmethd,a,prec,b,x,s_choiceleps,&
& desc_a,info,itmax=s_choice’itmax,iter=iter,err=err,&
& itrace=s_choicelitrace,&
& istop=s_choice%istopc,irst=s_choicefirst)

call prec)deallocate_wrk(info)

call psb_barrier(ctxt)

tslv = psb_wtime() - ti

call psb_gpu_exit()
call psb_exit(ctxt)

Listing 7: setup of a GPU-enabled test program part three.

It is very important to employ smoothers and coarsest solvers that are suited to the
GPU, i.e. methods that do NOT employ triangular system solve kernels. Methods that
satisfy this constraint include:

e JACOBI
¢ BJAC with the following methods on the local blocks:

— INVK
— INVT
— AINV

e POLY

and their /; variants.

5 USER INTERFACE 19

5 User Interface

The basic user interface of AMG4PBLAS consists of eight methods. The six methods
init, set, build, hierarchy_build, smoothers_build and apply encapsulate all the
functionalities for the setup and the application of any multilevel and one-level precon-
ditioner implemented in the package. The method free deallocates the preconditioner
data structure, while descr prints a description of the preconditioner setup by the user.
For backward compatibility, methods are also accessible as stand-alone subroutines.

For each method, the same user interface is overloaded with respect to the real/-
complex and single/double precision data; arguments with appropriate data types
must be passed to the method, i.e.,

¢ the sparse matrix data structure, containing the matrix to be preconditioned, must
be of type psb_xspmat_type with x = s for real single precision, x = d for real
double precision, x = ¢ for complex single precision, x = z for complex double
precision;

¢ the preconditioner data structure must be of type amg_xprec_type, withx = s, 4,
¢, z, according to the sparse matrix data structure;

¢ the arrays containing the vectors v and w involved in the preconditioner applica-
tion w = B~ v must be of type psb_xvect_type with x = s, d, ¢, z, in a manner
completely analogous to the sparse matrix type;

¢ real parameters defining the preconditioner must be declared according to the
precision of the sparse matrix and preconditioner data structures (see Section 5.2).

A description of each method is given in the remainder of this section.

20 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.1 Method init

call p%init(contxt,ptype,info)

This method allocates and initializes the preconditioner p, according to the precondi-
tioner type chosen by the user.

Arguments

contxt type(psb_ctxt_type), intent(in).
The communication context.
ptype character(len=*), intent(in).
The type of preconditioner. Its values are specified in Table 1.
Note that strings are case insensitive.
info integer, intent (out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 USER INTERFACE 21

5.2 Method set

call p¥set(what,val,info [,ilev, ilmax, pos, idx])

This method sets the parameters defining the preconditioner p. More precisely, the
parameter identified by what is assigned the value contained in val.

Arguments

what character(len=x).
The parameter to be set. It can be specified through its name; the string
is case-insensitive. See Tables 2-8.

val integer or character(len=*) or real(psb_spk_) or real(psb_dpk_),
intent (in).
The value of the parameter to be set. The list of allowed values and the
corresponding data types is given in Tables 2-8. When the value is of
type character (len=%), it is also treated as case insensitive.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
ilev integer, optional, intent(in).

For the multilevel preconditioner, the level at which the preconditioner
parameter has to be set. The levels are numbered in increasing order
starting from the finest one, i.e., level 1 is the finest level. If ilev is
not present, the parameter identified by what is set at all levels that are
appropriate (see Tables 2-8).

ilmax integer, optional, intent(in).
For the multilevel preconditioner, when both ilev and ilmax are present,
the settings are applied at all levels ilev:ilmax. When ilev is present
but ilmax is not, then the default is ilmax=ilev. The levels are num-
bered in increasing order starting from the finest one, i.e., level 1 is the
finest level.

pos character(len=%), optional, intent(in).
Whether the other arguments apply only to the pre-smoother ('PRE") or
to the post-smoother ('POST'). If pos is not present, the other arguments
are applied to both smoothers. If the preconditioner is one-level or the
parameter identified by what does not concern the smoothers, pos is

ignored.

idx integer, optional, intent(in).
An auxiliary input argument that can be passed to the underlying ob-
jects.

A variety of preconditioners can be obtained by setting the appropriate precondi-
tioner parameters. These parameters can be logically divided into four groups, i.e.,
parameters defining

1. the type of multilevel cycle and how many cycles must be applied;

22 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

2. the coarsening algorithm;
3. the solver at the coarsest level (for multilevel preconditioners only);
4. the smoother of the multilevel preconditioners, or the one-level preconditioner.

A list of the parameters that can be set, along with their allowed and default values, is
given in Tables 2-8.

Remark 2. A smoother is usually obtained by combining two objects: a smoother
('SMOOTHER_TYPE') and a local solver ('SUB_SOLVE'), as specified in Tables 7-9. For
example, the block-Jacobi smoother using ILU(0) on the blocks is obtained by combining
the block-Jacobi smoother object with the ILU(0) solver object. Similarly, the hybrid
Gauss-Seidel smoother (see Note in Table 7) is obtained by combining the block-Jacobi
smoother object with a single sweep of the Gauss-Seidel solver object, while the point-
Jacobi smoother is the result of combining the block-Jacobi smoother object with a single
sweep of the point-Jacobi solver object. In the same way are obtained the ¢;-versions
of the smoothers. However, for simplicity, shortcuts are provided to set all versions
of point-Jacobi, hybrid (forward) Gauss-Seidel, and hybrid backward Gauss-Seidel,
i.e., the previous smoothers can be defined just by setting 'SMOOTHER_TYPE' to certain
specific values (see Tables 7), without the need to set 'SUB_SOLVE' as well.

The smoother and solver objects are arranged in a hierarchical manner. When
specifying a smoother object, its parameters, including the local solver, are set to their
default values, and when a solver object is specified, its defaults are also set, overriding
in both cases any previous settings even if explicitly specified. Therefore if the user sets
a smoother, and wishes to use a solver different from the default one, the call to set the
solver must come after the call to set the smoother.

Similar considerations apply to the point-Jacobi, Gauss-Seidel and block-Jacobi
coarsest-level solvers, and shortcuts are available in this case too (see Table 5).

Remark 3. The polynomial-accelerated smoother described in Tables 7 and 9 re-
defines a sweep or iteration as corresponding to the degree of the polynomial used.
Consequently, the 'SMOOTHER_SWEEPS' option is overridden by the 'POLY_DEGREE'
option. This smoother is paired with a base smoother object, whose iterations are
accelerated using the specified polynomial smoothing technique. By default, the ¢;-
Jacobi smoother serves as the base smoother, offering theoretical guarantees on the
resulting convergence factor [15, 27]. Alternative combinations are experimental and
lack established guarantees.

Remark 4. Many of the coarsest-level solvers apply to a specific coarsest-matrix
layout; therefore, setting the solver after the layout may change the layout to either
distributed or replicated. Similarly, setting the layout after the solver may change the
solver.

More precisely, UMFPACK and SuperLU require the coarsest-level matrix to be
replicated, while SuperLU_Dist and KRM require it to be distributed. In these cases,

5 USER INTERFACE 23

setting the coarsest-level solver implies that the layout is redefined according to the
solver, ovverriding any previous settings. MUMPS, point-Jacobi, hybrid Gauss-Seidel
and block-Jacobi can be applied to replicated and distributed matrices, thus their choice
does not modify any previously specified layout. It is worth noting that, when the
matrix is replicated, the point-Jacobi, hybrid Gauss-Seidel and block-Jacobi solvers
and their ¢, — versions reduce to the corresponding local solver objects (see Remark 2).
For the point-Jacobi and Gauss-Seidel solvers, these objects correspond to a single
point-Jacobi sweep and a single Gauss-Seidel sweep, respectively, which are very poor
solvers.

On the other hand, the distributed layout can be used with any solver but UMFPACK
and SuperLU; therefore, if any of these two solvers has already been selected, the
coarsest-level solver is changed to block-Jacobi, with the previously chosen solver
applied to the local blocks. Likewise, the replicated layout can be used with any solver
but SuperLu_Dist and KRM; therefore, if SuperLu_Dist or KRM have been previously
set, the coarsest-level solver is changed to the default sequential solver.

In a parallel setting with many cores, we suggest to the users to change the default
coarsest solver for using the KRM choice, i.e. a parallel distributed iterative solution of
the coarsest system based on Krylov methods.

Remark 4. The argument idx can be used to allow finer control for those solvers; for
instance, by specifying the keyword 'MUMPS_IPAR_ENTRY' and an appropriate value for
idx, it is possible to set any entry in the MUMPS integer control array. See also Sec. 6.

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

24

what DATA TYPE val DEFAULT COMMENTS

'"ML_CYCLE' character(len=%) | 'VCYCLE' 'VCYCLE' Multilevel cycle: V-cycle, W-cycle, K-cycle,
'WCYCLE' and additive composition.
'KCYCLE'
"ADD'

'CYCLE_SWEEPS' integer Any integer 1 Number of multilevel cycles.

number > 1

Table 2:

Parameters defining the multilevel cycle and the number of cycles to be applied.

25

LV

+ 1/ jo uzaped Aysreds ay) 03 uonye3aid (@I1dN0D .
-3e pardnooap sarpdde uondo paANAS aUd ‘ COFAARAS
‘wyrrode uonedairdge [orrere g (0 . ‘. 0dd. |(*x=UST)I930RICYD DTV UHOY UV,
‘(910N 99S) anfea SIy}
sayoear S[9AJ[Jo rdquinu ayj 1 sdoys uon I < I_qunu
-e3a133e oY, "S[oAI] JO IDqUINU WNWIXEIA 02 198a3ur Auy I080qut SATT XVH,
‘(910N 995)
PIoysa1y} sy} 03 fenba 10 uey} 19Mof S S[2
-AJ] SATINDIISUOD OM} Je SUOISUSWIP XLIJeu
[eqo13 9y} usamiaq onyer ayj J1 sdojs uon 1<
-e3a133e oy, ‘ones JUIuLsILOd WINWIUTA G¢'1 | Tequnu Auy TeoI LOTLVY MO~ NIN,
*1SSAD0Ud Ydd AZIS ASUYOD NIKW,
I0J }Nejop 9y} JO INOAEJ Ul paroudt
SI 3 ‘eanedau J| ‘(90N 99s) pIo
-yso1y} sty o} [enba 10 ueyy remof st
XHjeu 3s9s1eod pandwod ay} jo soqqe
-LIeA JO Idqunu [eqo[3 ay3 Jt sdojs uon 0<
-e30133e oyl PIOYSaIy} 9ZIS 9SIL0D) I-| mqumu Luy 1888qUT VAZISTASYY0D " NIN,
‘(910N 99S)
sassadoid jo raquunu ay) Aq pardnmu
pfgYysony smp o3 renba 10 uey} 1MOJ SI
Xifew 35951200 payndurod sy jo sajqerrea
jofgoquunu eqor3 ays jt sdoys uoryeSai33e 0<
mﬁml ‘ssaooad 1ad PIOYSaIY} 9Z1IS 9sI1e0)) 00¢ Joqunu %G< Hw&mpqﬂ ,SSAD0Yd HAd dAZIS ASHY0D NINW.
. SINANINOD Linv4dda Tea AdAL VIvVd jeym

5 USER

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

26

what

DATA TYPE

val

DEFAULT

COMMENTS

"AGGR_TYPE'

character (len=x)

'SOC1',
'S0C2°,
'MATCHBOXP'

'soc1!

Type of aggregation algorithm: cur-
rently, for the decoupled aggre-
gation we implement two mea-
sures of strength of connection, the
one by Vanék, Mandel and Brez-
ina [35], and the one by Gratton et
al [24]. The coupled aggregation is
based on a parallel version of the
half-approximate matching imple-
mented in the MatchBox-P software
package [9].

"AGGR_SIZE'

integer

Any integer
power of
2, with
aggr_size >
2

Maximum size of aggregates when
the coupled aggregation based on
matching is applied. For aggres-
sive coarsening with size of ag-
gregate larger than 8 we recom-
mend the use of smoothed prolon-
gators. Used only with ’COUPLED’
and ’MATCHBOXP’

"AGGR_PROL'

character (len=%)

"SMOOTHED ',
'UNSMOOTHED

' SMOOTHED'

Prolongator used by the aggrega-
tion algorithm: smoothed or un-
smoothed (i.e., tentative prolonga-
tor).

Note. The aggregation algorithm stops when at least one of the following criteria is met: the coarse size threshold,
the minimum coarsening ratio, or the maximum number of levels is reached.
Therefore, the actual number of levels may be smaller than the specified maximum number of levels.

Table 3: Parameters defining the aggregation algorithm.

27

5 USER INTERFACE

‘(penunuod) unyjrrode uonedardde ay) Suruyep siejowere] f d[qe],

‘ASTT 1ojowrered ay} ypim 3es aun

-nox 3y} 3unjoaur £q 39s AJISes aq ued ‘[T°G UOT}IAG ‘GE] UT pasn 9SO} S YONS ‘S[OA] JUDIJJTP Je SPIOYSIY} JUSIJJI(] 30N

“paIoyyun
10 pordyy :xoyeduojord payjoows (HALTIAON (
oy Supndwod ur pesn XeN | (HALTIAON. CHILTIA (*=UST) I9100IRYD VIALTIA DY
9[qe} SIy} Jo Wwopoq ay} [10]
Je 930U 9Y} OS[e 995 "WIYJLIOZ[E UOT}OU IPqunu
-uod jJo yp3uans ay} Ul g PioysaIy} ayJ, 10°0 [eax Auy | (zereuwrered pury)Tes HSTHHIL HHOY,
ydeid xryew ay3 ur ssapou a3 Jo s9a13
-9p 3urpusdsap Aq PajIos 10 3ULdpIO [el
-njeu YL ‘wyjLiode uonedardde pard CTTYHAA
-NOJ3P S} J0J SADIPUIT JO JULIIPIO [eHTU] CTVIOLYN ¢ <TVIOLYN ¢ (x=UST) I8300IRYD , QY0 ¥V,
SINHININOD 11nv4ddad TReA HdAL VLvVd Jeyn

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

28

what DATA TYPE val DEFAULT COMMENTS

'COARSE_MAT' character(len=%) | 'DIST' 'REPL' Coarsest matrix layout: distributed among the pro-
'"REPL' cesses or replicated on each of them.

'COARSE_SOLVE' character(len=*) | 'MUMPS' See Note. | Solver used at the coarsest level: sequential LU
"UMF' from MUMPS, UMFPACK, or SuperLU (plus tri-
'SLU! angular solve); distributed LU from MUMPS or
'SLUDIST' SuperLU Dist (plus triangular solve); point-Jacobi,
'ILU! hybrid Gauss-Seidel or block-Jacobi and related ¢1-
' JACOBI' versions; Krylov Method (flexible Conjugate Gradi-
'GS! ent) coupled with the block-Jacobi preconditioner
'BJAC' with ILU(0) on the blocks. Note that UMF and SLU re-
"KRM' quire the coarsest matrix to be replicated, SLUDIST,
'L1-JACOBI JACOBI, GS, BJAC and KRM require it to be distributed,
'L1-BJAC' MUMPS can be used with either a replicated or a dis-
'L1-FBGS' tributed matrix. When any of the previous solvers is

specified, the matrix layout is set to a default value
which allows the use of the solver (see Remark 4,
p- 21). Note also that UMFPACK and SuperLU Dist
are available only in double precision.

29

*(PaNUIIU0D) [9AS] }SISILOD d} JE IDA[0S 3 SuTUPSp SIdjouwereJ G d[qe],

-ad £} 1oa70s a3 Sunpares Ajduuts Aq paureyqo suordo ynejap a3 asn 03 paysa33ns ST 31 SN JSIY © 10,

'Q [T, UI PaUTL)UuODd dIk SIDA[OS 3sIe0d J10J suondo 1oy, -9)oN

0<
‘sasroAul ayewrrxordde sy 10§ souesajo3-doIp 3s1yy qunu
pue uonyez1Ioloey (7/d)N11 93 ut 7 duersfo) doiQ 0| rearduy | (ze1ewered pury)Tesx \ SHHLNTI ASHY0D
0<
Iaqunu
‘sasroAul dyewrxordde oy 10§ ur 198
-[[J 3s1Y pue suonezLIooey] Ay} JO d [9A9] UI-{[L] 0 |-onur Auy 19893uT NITTIA ISHVOD.
0<
I_qunu
"IDA[OS [9A[-}SISILOD Sk UIS 193
-OUD SI OY[d 10 9 “T40DV L Uaym sdooms Jo ToquinN 0L | -o3ur Auy 10803UT \ SAFAMS ~HASHY0D |
SINHWNNOD | L1nv4dd TeA AL VIVA 1y

"9SIMIDUIO N'TT “PO[LISUL JT NTS USY} “PII[eISUT JT SAWNW UDY3 ‘PI[[LISUI JT NN — UOISISA UoIsIdaId ajqnop
9SIMIOUI0 NTT “Po[eIsur J1 TS UaY] “Pajreisur JT SANAN — UOISISA soﬁmﬁum,& Ewﬁm

JI9pI0 MCTSOEOW O] Ul UaSOYd a1k JAT0SINS ASHV0D pue dAT0S ASHV0D I10J sjineja(d 930N

“uotsaxd a[qnop ur ATuo a[qereae
are is1q-'142dng pue YDVJIAIAN eul 230N [¢] 99s
‘S[oUIdY 9AJOS WwvysAs renduerry Aojdwa jou op Aoy

LEJUIS S) 10§ payns A[[eoyoads a1e sasIaAUr ojew
®

<rxoxdde yeys ajou ‘() ANIV pue (4“1 ‘¢d “1d) L ANI
e4(b*d)ANI sostoau] oyewrxorddy ‘(eafos ren3ue
51 snid) YOVLAIAN 10 N14dng ‘SINNIN woly 0]
R(DNTIA ‘G)T “(d)T1 I9AJ0S [9A3][-)S98120D
fASe U9SOUD SI IOAJOS 1qOde[YDO[q Sy} dSed ur ‘XII}
—eu 35951200 3Y} JO SYD0[q [euoSerp Y} 10§ IOA[OS

o)

'9JON] @99

VANTV
AANT
+ LANT
e
IS
' SAWARW
QTIN,
' L0TT
I

(*=U8T) I990BIRYD

AAT0SENS ISYY0D

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

30

what DATA TYPE val DEFAULT COMMENTS
'"BJAC_STOP' character(len=*) 'FALSE' 'FALSE' Select whether to use a stopping criterion
'"TRUE' for the Block-Jacobi method used as a coarse
solver.
'BJAC_TRACE' character(len=x) 'FALSE' 'FALSE' Select whether to print a trace for the cal-
'"TRUE' culated residual for the Block-Jacobi method
used as a coarse solver.
'"BJAC_ITRACE' integer Any integer | -1 Number of iterations after which a trace is to
>0 be printed.
'BJAC_RESCHECK' integer Any integer | -1 Number of iterations after which a residual is
>0 to be calculated.
'BJAC_STOPTOL' real (kind_parameter) | Any real 0 Tolerance for the stopping criterion on the
<1 residual.
'KRM_METHOD' character(len=x) 'CG' 'FCG' A string that defines the iterative method to
'FCG' be used when employing a Krylov method
'CGS' 'KRM' as a coarse solver. CG the Conjugate
'CGR' Gradient method; FCG the Flexible Conjugate
'BICG' Gradient method; CGS the Conjugate Gradient
'BICGSTAB' Stabilized method; GCR the Generalized Conju-
'"BICGSTABL' gate Residual method; FCG the Flexible Conju-
'RGMRES ' gate Gradient method; BICG the Bi-Conjugate
Gradient method; BICGSTAB the Bi-Conjugate
Gradient Stabilized method; BICGSTABL the Bi-
Conjugate Gradient Stabilized method with
restarting; RGMRES the Generalized Minimal
Residual method with restarting. Refer to the
PSBLAS guide [21] for further information.
'KRM_KPREC' character (len=%) Table 1 'BJAC' The one-level preconditioners from the Table 1

can be used for the coarse Krylov solver.

31

"[OAJ] }S3SILOD A} Je ISAJOS) JUTUYAp s19jawered [euonIppy :9 d[qe],

‘sasroAul dewrxordde oy 105 ur 0<
-[[1J 3SI1J pUe SUOT}RZII0}R] ([dY} JO d [9AS] UI-[[T] 0 19393ug I1080quT NITIIA WY,
*9INJTEJ 9DUISIDAU0D JO 3sed ur adessow e yurid
0 = J["SUOTIRIDI , AOVULT WHY, AI9AD 90U3I2AU0D 0<
moqe adessow [euoryewrIojur ue jno jurd o < J1 1- 19393u1 10809uUT VIOVHLI WY,
I <
“w10319d 0} SUOTJRIST JO IOqUINU WINWIXEW Y], 0F 193931 18807UT CXVIWII WY,
'S[rejop oy} 10§ 9pmn3 [17] SV 1dSd
9y} 03 I9JaI {Pe)Sul pasn SI ULIOU-Z A} UT UOTIONPAI
[enpIsaI dATe[2I Y} € JI ‘ULIOU-Z 9y} Ul [enpIsal
SATI[DI A} SISN 31 3} ‘g JT “WIOU AJTUIUT 9} UT JOLId 71
pIEMDRQ SSIMULIOU dY} SISN POYIdW 33 U} T J] Z | s18oyug I10809uUT \Od0LSI WY,
“Po10USI ST 31 ISIMISY}O
‘Spoyjow SHUNHY 10 TgYL1SHOTE 9y} 10§ pakordurs st 1<
siy] -rejowered jreysar oy Surdyoads 1a8ayur uy 0€ 193931 1e8equrt , LSHT WY,
-9ouers[o} Surddoss ay . 001 | 1 >[edy | (z03ewered pury)Teex , ST
“IDAJOS PIINALIISIP Y} SI IO JNeJop
A, "9UO PAINLYSIpP © IO “Opou J[3UIS B U0 SUMOUY VISV,
-un [[e “I9A[0S AOJAIY [BqO[S B U29M3dq 9SO00YD) VASTVA, 4 ANML, (x=UST) I930CIRYD TVEI0TO WY,
y 219y sarjdde ¢ aqey, woiy
(heaned swes oy, () ANIV pue (4 13°zd ‘1d) LANI
m@ ‘d)MANI sas1oAu] ayewrrxoxddy “(aajos ren3uern
Esnid) MOVIANN 10 N1dng ‘SINNIN Wwoy]
Z(d)NTIN “Gd)NTL ()T 2/ OFUD WY, Se Udsoyd
F5ST JOATOS 1qOdR[YD0[q Y} dsed Ul “IduonTpuodard
FXLIjeW 38981200 9Y3 JO SYO0[q [eUOSeIp 9y} 10§ ISA[OS 0TI, G 9[qeL (x=UST) I930CIRYD L AIATOS ™ 9NS WY,

Lo

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

32

what DATA TYPE val DEFAULT COMMENTS
'SMOOTHER_TYPE' character(len=*) | 'JACOBI' 'FBGS' Type of smoother used in the multi-
'GS! level preconditioner: point-Jacobi, hybrid
'BGS' (forward) Gauss-Seidel, hybrid backward
'BJAC' Gauss-Seidel, block-Jacobi, ¢1-Jacobi, £1—
'AS' hybrid (forward) Gauss-Seidel, ¢;-point-
'L1-JACOBI' Jacobi and Additive Schwarz, polynomial
'L1-BJAC' accelerators; see [15] and Remark 3 (p. 21).
'L1-FBGS' It is ignored by one-level preconditioners.
'POLY"
'SUB_SOLVE' character(len=%) | 'JACOBI' GS and BGS for pre- and | The local solver to be used with the
'GS! post-smoothers of mul- | smoother or one-level preconditioner (see
'BGS' tilevel preconditioners, | Remark 2, page 24): point-Jacobi, hybrid
'ILU! respectively (forward) Gauss-Seidel, hybrid backward
'"ILUT! ILU for block-Jacobi | Gauss-Seidel, ILU(p), ILU(p, t), MILU(p),
'MILU' and Additive Schwarz | LU from MUMPS, SuperLU or UMFPACK
' MUMPS'! one-level precondition- | (plus triangular solve), Approximate In-
'SLU’ ers verses INVK(p, q), INVT(py, p2, t1, t2) and
'UMF! AINV(t); note that approximate inverses
"INVT' are specifically suited for GPUs since they
'INVK' do not employ triangular system solve ker-
"AINV' nels, see [3]. See Note for details on hybrid
Gauss-Seidel.
"SMOOTHER_SWEEPS' integer Any integer | 1 Number of sweeps of the smoother or one-
number > 0 level preconditioner. In the multilevel case,
no pre-smother or post-smoother is used
if this parameter is set to 0 together with
pos='PRE' or pos="'P0OST', respectively. Is
ignored if the smoother is 'POLY'
'"POLY_DEGREE' integer Any integer | 1 Degree of the polynomial accelerator, is
number > 1 equal to the number of matrix-vector prod-
and < 30 ucts performed by the smoother. Ignored

if the smoother is not 'POLY'

Table 7: Parameters defining the smoother or the details of the one-level preconditioner.

33

5 USER INTERFACE

‘(panunuod) 1euonTpu0daId [9AS-9UO) JO S[TeISP S} 10 IDYI00WS) SUTUYap siajouwere] g a[qel,

‘Juow
-n3re [euonydo xpT 9y} eIA UISOYD Se ‘Aex

-Ie JOIU0D [edI SJNNIA 2} Ul A1jUD ue 390G 0 | Toqumnu ear Auy Teax |, AMINT UVdY SdWAK,
‘Juaw

-n3re reuondo XpT 9y} LIA UISOLD Se ‘Aerrie IR_qunu

Tonuod 19333ut SN NIA 9} UI A1)Us Ue }ag 0 | 198a3ur Auy 188equt |, AMINT UVdI_ SANOKW,

‘ssadoxd
oea 0} [BD0[XLjew a3 Jo 3red ayj uo ATuo
unoe I9A[0S [LISS € Sk IO “I9A[0S PaINALy)
-SIp © Se pasn 9q p[nNoYs SJINNIN 1PoYIPYM

VHIATOS TVEOTD,

VHIATOS IVEQTD,
VHIATOS TVD0T,

(*=UST) I930BIBYD

g0TDD0T SdWAN,

‘uon 0 < Ioq
-ezri03oey (1°d)N 11 93 ur 7 aduersfoy doig 0 | -wmu [ear Auy | (1e3ewered pury)Tesl ,SYHIATI~ENS,
‘SUOTIRZI 0 < Joquinu
-1030€§ T 93rdwoour ayy Jo d [9AI] UI-[[L] 0 128ayur Auy 10809UT NITIIA—9nS,
“JUBLIBA GV S IOF | ANON
pue “IS300Ws ZIeMUDS SARIPPY [eIISSep
9y} IO UdSOUD 3 ISNW NS, IeY} 0N
“wayy Sunosr3
-3U I0J ,ANON, “de[Id9A0 U} WIOIj SUOTNJLL}
-uod ayj 3urppe 10J ,[nS, :AUO ZIEMUDS ANON
aARIpPY 10§ ‘10yerado uoneduoroid jo adA7, L ANON, JWOS, (¥=UST) I930RIRYD ,-104d”49nS ,
“JUBLIEA VY]
S} pue I9YI00WS ZIEMUDSG SALIPPPY [€dIS
-Se[D 93} J0J USSOD 9q ISNW OTYH e} 910N
‘31 unos3au 103 , ANON, ‘deroa0 au
JuUnodde ojul Junyey 10§ OTVH :AJUO ZIEMUDS , ANON ,
aAIppY 10§ ‘10jerado uonornsar jo adAJ, ,O'IVH, ,OIVH, (x=UST) 1930BIRYD L MISTY A0S,
“ATUO ZIEMUDS 0 < Ioqunu
SAIPPY 10j ‘s1dAe] de[1oAo Jo Iaquny 1 123ayur Auy 1e8equr L YA0TENS,
SINEWNOD rinvdaaa Tea 4dAL VIVA Jeym

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

34

what DATA TYPE val DEFAULT COMMENTS
'"POLY_VARIANT' character (len=+) 'CHEB_4' 'CHEB_4' Select the type of
'CHEB_4_0OPT' polynomial accelerator.
'"CHEB_1_0PT' The 'CHEB_4' and
'"CHEB_4_0OPT' types
are those based on the
Chebyshev polyno-

mials of the 4th-kind
described in [27]. The
'"CHEB_1_0PT' version
is the one described
in [15] and based on
the Chebyshev polyno-
mials of the 15t-kind.

'"POLY_RHO_ESTIMATE'

character (len=%)

'POLY_RHO_EST_POWER'

'POLY_RHO_EST_POWER'

Algorithm for estimat-
ing the spectral ra-
dius of the smoother to
which the polynomial
acceleration is applied.
The only implemented
algorithm is the power
method; see also the
two following options.

'"POLY_RHO_ESTIMATE_ITERATIONS'| integer Any integer 20 Number of iterations
number > 1 for the spectral radius

estimate.
'"POLY_RHO_BA' real (kind_parameter) | Any real 1 Sets an estimate of

number € (0,1]

the spectral radius of
the base smoother to
which the polynomial
accelerator is applied.

Table 9: Parameters defining the smoother or the details of the one-level preconditioner (continued).

5 USER INTERFACE 35

5.3 Method hierarchy _build

call pkhierarchy_build(a,desc_a,info)

This method builds the hierarchy of matrices and restriction/prolongation operators
for the multilevel preconditioner p, according to the requirements made by the user
through the methods init and set.

Arguments

a type(psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [21].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [21].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

36

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.4 Method smoothers_build

call p’smoothers_build(a,desc_a,p,infol,amold,vmold,imold])

This method builds the smoothers and the coarsest-level solvers for the multilevel
preconditioner p, according to the requirements made by the user through the methods
init and set, and based on the aggregation hierarchy produced by a previous call to
hierarchy_build (see Section 5.3).

Arguments

a

desc_a

info

amold

vmold

imold

type (psb_xspmat_type), intent(in).

The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [21].

type (psb_desc_type), intent(in).

The communication descriptor of a. See the PSBLAS User’s Guide for
details [21].

integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.
class(psb_xgbase_sparse_mat), intent (in), optional

The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [21].
class(psb_xgbase_vect_type), intent(in), optional.

The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

class(psb_i_base_vect_type), intent(in), optional.

The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

5 USER INTERFACE 37

5.5 Method build

call p¥%build(a,desc_a,info[,amold,vmold,imold])

This method builds the preconditioner p according to the requirements made by the
user through the methods init and set (see Sections 5.3 and 5.4 for multilevel pre-
conditioners). It is mostly provided for backward compatibility; indeed, it is inter-
nally implemented by invoking the two previous methods hierarchy_build and
smoothers_build, whose nomenclature would however be somewhat unnatural when
dealing with simple one-level preconditioners.

Arguments

a type (psb_xspmat_type), intent(in).
The sparse matrix structure containing the local part of the matrix
to be preconditioned. Note that x must be chosen according to the
real/complex, single/double precision version of AMG4PSBLAS un-
der use. See the PSBLAS User’s Guide for details [21].

desc_a type(psb_desc_type), intent(in).
The communication descriptor of a. See the PSBLAS User’s Guide for
details [21].

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class (psb_xgbase_sparse_mat) , intent(in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [21].

vmold class (psb_xgbase_vect_type) , intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

imold class(psb_i_base_vect_type), intent(in), optional.
The desired dynamic type for internal integer vector components; this
allows e.g. running on GPUs.

The method can be used to build multilevel preconditioners too.

38 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.6 Method apply

call phapply(x,y,desc_a,info [,trans,work])

This method computes y = op(B~!) x, where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its transpose, according to
the value of trans. Note that, when AMG4PSBLAS is used with am iterative solver
from PSBLAS, papply is called within the PSBLAS method psb_krylov and hence it
is completely transparent to the user, who will almost never invoke it directly.

Arguments

X type(kind_parameter), dimension(:), intent(in)—.
The local part of the vector x. Note that type and kind_parameter must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

y type (kind_parameter), dimension(:), intent(out)—.
The local part of the vector y. Note that type and kind_parameter must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.

desc_a type(psb_desc_type), intent(in).
The communication descriptor associated to the matrix to be precondi-
tioned.

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

trans character(len=1), optional, intent(in).
If trans = 'N','n' then op(B™!) = B~!; if trans = 'T','t"' then
op(B~') = BT (transpose of B!); if trans = 'C', 'c' then op(B~!) =
B~C (conjugate transpose of B~1).

work type(kind_parameter), dimension(:), optional, target—.
Workspace. Its size should be at least 4 * psb_cd_get_local_
cols(desc_a) (see the PSBLAS User’s Guide). Note that fype and
kind_parameter must be chosen according to the real/complex, sin-
gle/double precision version of AMG4PSBLAS under use.

5 USER INTERFACE

5.7 Method free

call pY%free(p,info)
This method deallocates the preconditioner data structure p.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

39

40 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.8 Method descr

call pldescr(info, [iout, root, verbosity])

This method prints a description of the preconditioner p to the standard output or to
a file. It must be called after hierachy_build and smoothers_build, or build, have
been called.

Arguments
info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
iout integer, intent(in), optional.

The id of the file where the preconditioner description will be
printed; the default is the standard output.

root integer, intent(in), optional.
The id of the process where the preconditioner description will be
printed; the default is psb_root_.

verbosity integer, intent(in), optional
The verbosity level of the description. Default value is 0. For
values higher than 0, it prints out further information, e.g., for a
distributed multilevel preconditioner the size of the coarse matri-
ces on every process.

5.9 Auxiliary Methods

Various functionalities are implemented as additional methods of the preconditioner
object.

59.1 Method: dump

call pkdump(infol,istart,iend,prefix,head,ac,rp,smoother,solver,global_num])

Dump on file.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

amold class(psb_xgbase_sparse_mat), intent (in), optional.
The desired dynamic type for internal matrix components; this allows
e.g. running on GPUs; it needs not be the same on all processes. See the
PSBLAS User’s Guide for details [21].

5 USER INTERFACE 41

5.9.2 Method: clone
call p¥%clone(pout,info)

Create a (deep) copy of the preconditioner object.

Arguments
pout type (amg_xprec_type), intent(out).
The copy of the preconditioner data structure. Note that x must be
chosen according to the real/complex, single/double precision version
of AMG4PSBLAS under use.
info integer, intent(out).

Error code. If no error, 0 is returned. See Section 7 for details.

5.9.3 Method: sizeof
sz = phsizeof ([globall)

global 1logical, optiomal.
Whether the global or local preconditioner memory occupation is de-
sired. Default: .false..
Return memory footprint in bytes.

5.9.4 Method: allocate_ wrk
call pkallocate_wrk(infol[, vmold])

Allocate internal work vectors. Each application of the preconditioner uses a number
of work vectors which are allocated internally as necessary; therefore allocation and
deallocation of memory occurs multiple times during the execution of an iterative
method. In most cases this strategy is perfectly acceptable, but on some platforms, most
notably GPUs, memory allocation is a slow operation, and the default behaviour would
lead to a slowdown. This method allows to trade space for time by preallocating the
internal workspace outside of the invocation of a linear solver method. When using
GPUs or other specialized devices, the vmold argument is also necessary to ensure the
internal work vectors are of the appropriate dynamic type to exploit the accelerator
hardware; when allocation occurs internally this is taken care of based on the dynamic
type of the x argument to the apply method.

Arguments
info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.
vmold class (psb_xgbase_vect_type) , intent(in), optional.
The desired dynamic type for internal vector components; this allows
e.g. running on GPUs.

42 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

5.9.5 Method: deallocate_wrk

call pldeallocate_wrk(info)
call pifree_wrk(info)

Deallocate internal work vectors.

Arguments

info integer, intent(out).
Error code. If no error, 0 is returned. See Section 7 for details.

5 USER INTERFACE 43

6 Adding new smoother and solver objects to AMG4PSBLAS

Developers can add completely new smoother and/or solver classes derived from the
base objects in the library (see Remark 2 in Section 5.2), without recompiling the library
itself.

To do so, it is necessary first to select the base type to be extended. In our experience,
it is quite likely that the new application needs only the definition of a “solver” object,
which is almost always acting only on the local part of the distributed matrix. The
parallel actions required to connect the various solver objects are most often already
provided by the block-Jacobi or the additive Schwarz smoothers. To define a new solver,
the developer will then have to define its components and methods, perhaps taking
one of the predefined solvers as a starting point, if possible.

Once the new smoother/solver class has been developed, to use it in the context of
the multilevel preconditioners it is necessary to:

¢ declare in the application program a variable of the new type;

* pass that variable as the argument to the set routine as in the following;:

call plset(smoother,info [,ilev,ilmax,pos])
call plset(solver,info [,ilev,ilmax,pos])

¢ link the code implementing the various methods into the application executable.

The new solver object is then dynamically included in the preconditioner structure, and
acts as a mold to which the preconditioner will conform, even though the AMG4PSBLAS
library has not been modified to account for this new development.

It is possible to define new values for the keyword WHAT in the set routine; if the
library code does not recognize a keyword, it passes it down the composition hierarchy
(levels containing smoothers containing in turn solvers), so that it can eventually be
caught by the new solver. By the same token, any keyword/value pair that does not
pertain to a given smoother should be passed down to the contained solver, and any
keyword /value pair that does not pertain to a given solver is by default ignored.

An example is provided in the source code distribution under the folder tests/newslv.
In this example we are implementing a new incomplete factorization variant (which
is simply the ILU(0) factorization under a new name). Because of the specifics of this
case, it is possible to reuse the basic structure of the ILU solver, with its L/D/U com-
ponents and the methods needed to apply the solver; only a few methods, such as the
description and most importantly the build, need to be ovverridden (rewritten).

The interfaces for the calls shown above are defined using

smoother class(amg_x_base_smoother_type)

The user-defined new smoother to be employed in the preconditioner.
solver class(amg_x_base_solver_type)

The user-defined new solver to be employed in the preconditioner.

44 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

The other arguments are defined in the way described in Sec. 5.2. As an example, in the
tests/newslv code we define a new object of type amg_d_tlu_solver_type, and we
pass it as follows:

! sparse matriz and preconditioner
type (psb_dspmat_type) :: a

type (amg_dprec_type) :: prec

type (amg_d_tlu_solver_type) :: tlusv

prepare the preconditioner: an ML with defaults, but with TLU solver at
tntermediate levels. All other parameters are at default wvalues.

call preclinit('ML', info)

call prechierarchy_build(a,desc_a,info)

nlv = preclget_nlevs()

call precset(tlusv, info,ilev=1,ilmax=max(1,nlv-1))
call prec’smoothers_build(a,desc_a,info)

7 ERROR HANDLING 45

7 Error Handling

The error handling in AMG4PSBLAS is based on the PSBLAS error handling. Error
conditions are signaled via an integer argument info; whenever an error condition is
detected, an error trace stack is built by the library up to the top-level, user-callable
routine. This routine will then decide, according to the user preferences, whether the
error should be handled by terminating the program or by returning the error condition
to the user code, which will then take action, and whether an error message should be
printed. These options may be set by using the PSBLAS error handling routines; for
further details see the PSBLAS User’s Guide [21].

46 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

A License

AMGA4PSBLAS is freely distributable under the following copyright terms:

AMG4PSBLAS version 1.0
Algebraic MultiGrid Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 3.7)

(C) Copyright 2021

Pasqua D'Ambra IAC-CNR, IT
Fabio Durastante University of Pisa and IAC-CNR, IT
Salvatore Filippone University of Rome Tor-Vergata and IAC-CNR, IT

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"TAS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

A LICENSE 47

AMGH4PSBLAS is an evolution of MLD2P4, whose license we reproduce here to
abide by its terms:

MLD2P4 version 2.2
Multilevel Domain Decomposition Parallel Preconditioners Package
based on PSBLAS (Parallel Sparse BLAS version 3.5)

(C) Copyright 2008-2018

Salvatore Filippone
Pasqua D'Ambra
Daniela di Serafino

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The name of the MLD2P4 group or the names of its contributors may
not be used to endorse or promote products derived from this
software without specific written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"TAS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MLD2P4 GROUP OR ITS CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

48

AMGA4PSBLAS USER’S AND REFERENCE GUIDE

AMGA4PSBLAS is distributed together with (a small part of) the graph-matching

library MatchBox-P [9]. Per the license requirements, we reproduce the relevant part
here.

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

>k >k >k >k K 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k >k %k %k >k 3k 3K 3k 3k 3k 5k 3k %k 5k >k %k %k %k >k 3k 5K 5k 3k 3k %k %k >k >k %k %k %K 5K 5K 3k 5k 5k %k %k %k >k >k >k %k % %K >k >k >k >k >k %k %k >k >k k% %

MatchboxP: A C++ library for approximate weighted matching
Mahantesh Halappanavar (hala@pnnl.gov)
Pacific Northwest National Laboratory

>k >k >k >k >k 3k 3k 3k 5k 5k 5k 3k 3k 5k 5k %k %k >k >k 3k 3k 3k 5k 3k 5k %k %k >k >k %k %k >k >k 5k 5k 5k 3k %k %k %k >k >k %k %k K >k >k >k 5k 5k %k %k >k >k >k >k %k %k K >k >k >k >k >k %k %k >k >k >k %k %

Copyright (2021) Battelle Memorial Institute
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

>k >k >k >k >k 3k 3k 5k ok ok 5k 5k >k 5k 5k %k %k >k >k >k 5k >k 5k 5k 5k >k >k %k %k %k >k >k >k >k 5k 5k 5k %k %k >k >k >k %k %k >k >k >k >k 5k >k 5k %k >k >k >k >k %k >k >k >k >k >k >k >k >k >k >k >k >k *k k%

B CONTRIBUTOR COVENANT CODE OF CONDUCT 49

B Contributor Covenant Code of Conduct

Our Pledge We as members, contributors, and leaders pledge to make participation
in our community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender identity and
expression, level of experience, education, socio-economic status, nationality, personal
appearance, race, caste, color, religion, or sexual identity and orientation. We pledge to
act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and
healthy community. Our Standards Examples of behavior that contributes to a positive
environment for our community include:

¢ Demonstrating empathy and kindness toward other people

¢ Being respectful of differing opinions, viewpoints, and experiences

Giving and gracefully accepting constructive feedback

Accepting responsibility and apologizing to those affected by our mistakes, and
learning from the experience

* Focusing on what is best not just for us as individuals, but for the overall commu-
nity

Examples of unacceptable behavior include:

¢ The use of sexualized language or imagery, and sexual attention or advances of
any kind

¢ Trolling, insulting or derogatory comments, and personal or political attacks
¢ Public or private harassment

¢ Publishing others’” private information, such as a physical or email address, with-
out their explicit permission

¢ Other conduct which could reasonably be considered inappropriate in a profes-
sional setting

Enforcement Responsibilities Community leaders are responsible for clarifying and
enforcing our standards of acceptable behavior and will take appropriate and fair cor-
rective action in response to any behavior that they deem inappropriate, threatening,
offensive, or harmful. Community leaders have the right and responsibility to remove,
edit, or reject comments, commits, code, wiki edits, issues, and other contributions that
are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate. Scope This Code of Conduct applies within all community
spaces, and also applies when an individual is officially representing the community
in public spaces. Examples of representing our community include using an official
e-mail address, posting via an official social media account, or acting as an appointed

50 AMGA4PSBLAS USER’S AND REFERENCE GUIDE

representative at an online or offline event. Enforcement Instances of abusive, harass-
ing, or otherwise unacceptable behavior may be reported to the community leaders
responsible for enforcement at eocoe@na.iac.cnr.it. All complaints will be reviewed and
investigated promptly and fairly. All community leaders are obligated to respect the
privacy and security of the reporter of any incident.

Enforcement Guidelines Community leaders will follow these Community Impact
Guidelines in determining the consequences for any action they deem in violation of
this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the behavior
was inappropriate. A public apology may be requested.

2. Warning
Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction
with the people involved, including unsolicited interaction with those enforcing
the Code of Conduct, for a specified period of time. This includes avoiding
interactions in community spaces as well as external channels like social media.
Violating these terms may lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sus-
tained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communi-
cation with the community for a specified period of time. No public or private
interaction with the people involved, including unsolicited interaction with those
enforcing the Code of Conduct, is allowed during this period. Violating these
terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards,
including sustained inappropriate behavior, harassment of an individual, or
aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the
community.

mailto:eocoe@na.iac.cnr.it

B CONTRIBUTOR COVENANT CODE OF CONDUCT 51

Attribution This Code of Conduct is adapted from the Contributor Covenant, version
2.0, available at https:/ /www.contributor-covenant.org/version/2/0/code_of_conduct
html. Community Impact Guidelines were inspired by Mozilla’s code of conduct
enforcement ladder. For answers to common questions about this code of conduct, see
the FAQ at https:/ /www.contributor-covenant.org/faq. Translations are available at
https:/ /www.contributor-covenant.org/translations.

https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

52 MLD2P4 USER’S AND REFERENCE GUIDE

References

[1] A. Aprovitola, P. D’Ambra, F. Denaro, D. di Serafino, S. Filippone, Scalable algebraic
multilevel preconditioners with application to CFD, in Proc. of CFD 2008, LNCSE, 74,
(2010), 15-27.

[2] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J. L'Excellent, C. Weisbecker,
Improving multifrontal methods by means of block low-rank representations, SIAM
Journal on Scientific Computing, volume 37 (3), 2015, A1452-A1474. See also
http://mumps.enseeiht.fr.

[3] D. Bertaccini and S. Filippone, Sparse approximate inverse preconditioners on high
performance GPU platforms, Comput. Math. Appl., 71, (2016), no. 3, 693-711.

[4] M. Brezina, P. Vanék, A Black-Box Iterative Solver Based on a Two-Level Schwarz
Method, Computing, 63, 1999, 233-263.

[5] W. L. Briggs, V. E. Henson, S. FE. McCormick, A Multigrid Tutorial, Second Edition,
SIAM, 2000.

[6] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, Extending PSBLAS to Build
Parallel Schwarz Preconditioners, in J. Dongarra, K. Madsen, J. Wasniewski, editors,
Proceedings of PARA 04 Workshop on State of the Art in Scientific Computing,
Lecture Notes in Computer Science, Springer, 2005, 593-602.

[7] A. Buttari, P. D’Ambra, D. di Serafino, S. Filippone, 2LEV-D2P4: a package of
high-performance preconditioners for scientific and engineering applications, Applicable
Algebra in Engineering, Communications and Computing, 18 (3) 2007, 223-239.

[8] X. C. Cai, M. Sarkis, A Restricted Additive Schwarz Preconditioner for General Sparse
Linear Systems, SIAM Journal on Scientific Computing, 21 (2), 1999, 792-797.

[9] U.. V. Catalyurek, F. Dobrian, A. Gebremedhin, M. Halappanavar, and A. Pothen,
Distributed-memory parallel algorithms for matching and coloring, in PCO’11 New
Trends in Parallel Computing and Optimization, IEEE International Symposium
on Parallel and Distributed Processing Workshops, IEEE CS, 2011.

[10] P. D’Ambra, S. Filippone, D. di Serafino, On the Development of PSBLAS-based
Parallel Two-level Schwarz Preconditioners, Applied Numerical Mathematics, Elsevier
Science, 57 (11-12), 2007, 1181-1196.

[11] P. D’Ambra, D. di Serafino, S. Filippone, MLD2P4: a Package of Parallel Multilevel
Algebraic Domain Decomposition Preconditioners in Fortran 95, ACM Trans. Math.
Softw., 37(3), 2010, art. 30.

[12] P. D’Ambra and P.S. Vassilevski, Adaptive AMG with coarsening based on compatible
weighted matching, Computing and Visualization in Science, 16, (2013) 59-76.

REFERENCES 53

[13] P. D’Ambra, S. Filippone and P.S. Vassilevski, BootCMatch: a software package for
bootstrap AMG based on graph weighted matching, ACM Transactions on Mathemati-
cal Software, 44, (2018) 39:1-39:25.

[14] P. D’Ambra, F. Durastante, S. Filippone, AMG preconditioners for Linear Solvers
towards Extreme Scale, SIAM Journal on Scientific Computing 43, no. 5 (2021):
S679-5703.

[15] P. D’Ambra, F. Durastante, S. Filippone, S. Massei, S. Thomas Optimal Polynomial
Smoothers for Parallel AMG, 2024, arXiv:2407.09848.

[16] T. A. Davis, Algorithm 832: UMFPACK - an Unsymmetric-pattern Multifrontal Method
with a Column Pre-ordering Strategy, ACM Transactions on Mathematical Software,
30, 2004, 196-199. (See also http://www.cise.ufl.edu/ davis/)

[17] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li,]. W. H. Liu, A supernodal approach
to sparse partial pivoting, SIAM Journal on Matrix Analysis and Applications, 20 (3),
1999, 720-755.

[18] J.]. Dongarra, J. Du Croz, 1. S. Duff, S. Hammarling, A set of Level 3 Basic Linear
Algebra Subprograms, ACM Transactions on Mathematical Software, 16 (1) 1990,
1-17.

[19] J.J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson, An extended set of FORTRAN
Basic Linear Algebra Subprograms, ACM Transactions on Mathematical Software, 14
(1) 1988, 1-17.

[20] S. Filippone, P. D’Ambra, M. Colajanni, Using a Parallel Library of Sparse Linear
Algebra in a Fluid Dynamics Application Code on Linux Clusters, in Proc. of ParCo
2001, Parallel Computing, Advances and Current Issues, 2002.

[21] S. Filippone, A. Buttari, PSBLAS 3.5.0 User’s Guide. A Reference
Guide for the Parallel Sparse BLAS Library, 2012, available from
https://github.com/sfilippone/psblas3/tree/master/docs.

[22] S. Filippone, A. Buttari, Object-Oriented Techniques for Sparse Matrix Computations in
Fortran 2003. ACM Transactions on on Mathematical Software, 38 (4), 2012, art. 23.

[23] S. Filippone, M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra Computation
on Sparse Matrices, ACM Transactions on Mathematical Software, 26 (4), 2000, 527-
550.

[24] S. Gratton, P. Henon, P. Jiranek and X. Vasseur, Reducing complexity of algebraic
multigrid by aggregation, Numerical Lin. Algebra with Applications, 2016, 23:501-
518

[25] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
M. Snir, MPI: The Complete Reference. Volume 2 - The MPI-2 Extensions, MIT Press,
1998.

https://arxiv.org/abs/2407.09848

54 MLD2P4 USER’S AND REFERENCE GUIDE

[26] C.L.Lawson, R.]J. Hanson, D. Kincaid, F. T. Krogh, Basic Linear Algebra Subprograms
for FORTRAN usage, ACM Transactions on Mathematical Software, 5 (3), 1979,
308-323.

[27] J. Lottes, Optimal polynomial smoothers for multigrid V-cycles, Numerical Linear
Algebra with Applications 30.6 (2023): e2518.

[28] X. S. Li, J. W. Demmel, SuperLU_DIST: A Scalable Distributed-memory Sparse Di-
rect Solver for Unsymmetric Linear Systems, ACM Transactions on Mathematical
Software, 29 (2), 2003, 110-140.

[29] Y. Notay, P. S. Vassilevski, Recursive Krylov-based multigrid cycles, Numerical Linear
Algebra with Applications, 15 (5), 2008, 473—487.

[30] Y. Saad, Iterative methods for sparse linear systems, 2nd edition, SIAM, 2003.

[31] B. Smith, P. Bjorstad, W. Gropp, Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations, Cambridge University Press, 1996.

[32] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, J. Dongarra, MPI: The Complete
Reference. Volume 1 - The MPI Core, second edition, MIT Press, 1998.

[33] K. Stiiben, An Introduction to Algebraic Multigrid, in A. Schiiller, U. Trottenberg,
C. Oosterlee, Multigrid, Academic Press, 2001.

[34] R.S. Tuminaro, C. Tong, Parallel Smoothed Aggregation Multigrid: Aggregation Strate-
gies on Massively Parallel Machines, in J. Donnelley, editor, Proceedings of Super-
Computing 2000, Dallas, 2000.

[35] P. Vanék, J. Mandel, M. Brezina, Algebraic Multigrid by Smoothed Aggregation for
Second and Fourth Order Elliptic Problems, Computing, 56 (3) 1996, 179-196.

	AMG4PSBLAS User's and Reference Guide
	Abstract
	1 General Overview
	2 Code Distribution
	3 Configuring and Building AMG4PSBLAS
	3.1 Prerequisites
	3.2 Optional third party libraries
	3.3 Configuration options
	3.4 Bug reporting
	3.5 Example and test programs

	4 Getting Started
	4.1 Examples
	4.2 GPU example

	5 User Interface
	5.1 Method init
	5.2 Method set
	5.3 Method hierarchy_build
	5.4 Method smoothers_build
	5.5 Method build
	5.6 Method apply
	5.7 Method free
	5.8 Method descr
	5.9 Auxiliary Methods
	5.9.1 Method: dump
	5.9.2 Method: clone
	5.9.3 Method: sizeof
	5.9.4 Method: allocate_wrk
	5.9.5 Method: deallocate_wrk

	6 Adding new smoother and solver objects to AMG4PSBLAS
	7 Error Handling
	A License
	B Contributor Covenant Code of Conduct
	References

