
PSBLAS-Extensions 1.0

A reference guide for the Parallel Sparse BLAS library

by Salvatore Filippone
University of Rome “Tor Vergata”.

March 25, 2015.

2

Contents

1 Introduction 1
1.1 Application structure . 1

2 Data Structures 3
2.1 CPU-class extensions . 3
2.2 GPU-class extensions . 8

3 GPU Environment Routines 10
psb gpu init . 10
psb gpu exit . 10
psb gpu DeviceSync . 10
psb gpu getDeviceCount . 10
psb gpu getDevice . 11
psb gpu setDevice . 11
psb gpu DeviceHasUVA . 11
psb gpu WarpSize . 11
psb gpu MultiProcessors . 11
psb gpu MaxThreadsPerMP . 11
psb gpu MaxRegisterPerBlock . 11
psb gpu MemoryClockRate . 11
psb gpu MemoryBusWidth . 12
psb gpu MemoryPeakBandwidth . 12

i

ii

1 Introduction

The PSBLAS-EXT library contains a set of extensions to the base library. The
extensions provide additional storage formats beyond the ones already
contained in the base library, as well as interfaces to two external libraries:

SPGPU https://code.google.com/p/spgpu/, for computations on NVIDIA
GPUs;

LIBRSB http://sourceforge.net/projects/librsb/, for computations on
multicore parallel machines.

The infrastructure laid out in the base library to allow for these extensions is
detailed in the references [2, 4]; the GPU-specific data formats are described
in [1].

1.1 Application structure

A sample application using the PSBLAS extensions will contain the following
steps:

• USE the appropriat modules (psb_ext_mod, psb_gpu_mod);

• Declare a mold variable of the necessary type (e.g.
psb_d_ell_sparse_mat, psb_d_hlg_sparse_mat, psb_d_vect_gpu);

• Pass the mold variable to the base library interface where needed to
ensure the appropriate dynamic type.

Suppose you want to use the GPU-enabled ELLPACK data structure; you
would use a piece of code like this (and don’t forget, you need GPU-side
vectors along with the matrices):

program my_gpu_test

use psb_base_mod

use psb_util_mod

use psb_ext_mod

use psb_gpu_mod

type(psb_dspmat_type) :: a, agpu

type(psb_d_vect_type) :: x, xg, bg

real(psb_dpk_), allocatable :: xtmp(:)

type(psb_d_vect_gpu) :: vmold

type(psb_d_elg_sparse_mat) :: aelg

type(psb_ctxt_type) :: ctxt

integer :: iam, np

call psb_init(ctxt)

call psb_info(ctxt,iam,np)

call psb_gpu_init(ctxt, iam)

! My own home-grown matrix generator

1

https://code.google.com/p/spgpu/
http://sourceforge.net/projects/librsb/

call gen_matrix(ctxt,idim,desc_a,a,x,info)

if (info /= 0) goto 9999

call a%cscnv(agpu,info,mold=aelg)

if (info /= 0) goto 9999

xtmp = x%get_vect()

call xg%bld(xtmp,mold=vmold)

call bg%bld(size(xtmp),mold=vmold)

! Do sparse MV

call psb_spmm(done,agpu,xg,dzero,bg,desc_a,info)

9999 cotinue

if (info == 0) then

write(*,*) '42'

else

write(*,*) 'Something went wrong ',info

end if

call psb_gpu_exit()

call psb_exit(ctxt)

stop

end program my_gpu_test

A full example of this strategy can be seen in the test/ext/kernel and
test/gpu/kernel subdirectories, where we provide sample programs to test
the speed of the sparse matrix-vector product with the various data structures
included in the library.

2

2 Data Structures

Access to the facilities provided by psblas-ext is mainly through the data
types that are provided within. The data classes are derived from the base
classes in PSBLAS, through the Fortran 2003 mechanism of type extension [6].
The data classes are divided between the general purpose CPU extensions, the
GPU interfaces and the RSB interfaces.
In the description we will make use of the notation introduced in Table 1.

Table 1: Notation for parameters describing a sparse matrix

Name Description
M Number of rows in matrix
N Number of columns in matrix
NZ Number of nonzeros in matrix
AVGNZR Average number of nonzeros per row
MAXNZR Maximum number of nonzeros per row
NDIAG Numero of nonzero diagonals
AS Coefficients array
IA Row indices array
JA Column indices array
IRP Row start pointers array
JCP Column start pointers array
NZR Number of nonzeros per row array
OFFSET Offset for diagonals

Figure 1: Example of sparse matrix

2.1 CPU-class extensions

ELLPACK

The ELLPACK/ITPACK format (shown in Figure 2) comprises two
2-dimensional arrays AS and JA with M rows and MAXNZR columns, where
MAXNZR is the maximum number of nonzeros in any row [?]. Each row of the
arrays AS and JA contains the coefficients and column indices; rows shorter
than MAXNZR are padded with zero coefficients and appropriate column indices,
e.g. the last valid one found in the same row.

3

1

1

2

3

2

3

8

4

8

9

10

107

AS ARRAY JA ARRAY

Figure 2: ELLPACK compression of matrix in Figure 1

do i =1 ,n
t =0
do j =1 ,maxnzr

t = t + as (i , j) * x (j a (i , j))
end do
y (i) = t

end do

Algorithm 1: Matrix-Vector product in ELL format

The matrix-vector product y = Ax can be computed with the code shown in
Alg. 1; it costs one memory write per outer iteration, plus three memory reads
and two floating-point operations per inner iteration.
Unless all rows have exactly the same number of nonzeros, some of the
coefficients in the AS array will be zeros; therefore this data structure will have
an overhead both in terms of memory space and redundant operations
(multiplications by zero). The overhead can be acceptable if:

1. The maximum number of nonzeros per row is not much larger than the
average;

2. The regularity of the data structure allows for faster code, e.g. by allowing
vectorization, thereby offsetting the additional storage requirements.

In the extreme case where the input matrix has one full row, the ELLPACK
structure would require more memory than the normal 2D array storage. The
ELLPACK storage format was very popular in the vector computing days; in
modern CPUs it is not quite as popular, but it is the basis for many GPU
formats.
The relevant data type is psb_T_ell_sparse_mat:

type, extends(psb_d_base_sparse_mat) :: psb_d_ell_sparse_mat

!

! ITPACK/ELL format, extended.

!

integer(psb_ipk_), allocatable :: irn(:), ja(:,:), idiag(:)

real(psb_dpk_), allocatable :: val(:,:)

4

contains

....

end type psb_d_ell_sparse_mat

Hacked ELLPACK

The hacked ELLPACK (HLL) format alleviates the main problem of the
ELLPACK format, that is, the amount of memory required by padding for
sparse matrices in which the maximum row length is larger than the average.
The number of elements allocated to padding is
[(m ∗maxNR)− (m ∗ avgNR) = m ∗ (maxNR− avgNR)] for both AS and JA

arrays, where m is equal to the number of rows of the matrix, maxNR is the
maximum number of nonzero elements in every row and avgNR is the average
number of nonzeros. Therefore a single densely populated row can seriously
affect the total size of the allocation.
To limit this effect, in the HLL format we break the original matrix into equally
sized groups of rows (called hacks), and then store these groups as independent
matrices in ELLPACK format. The groups can be arranged selecting rows in an
arbitrarily manner; indeed, if the rows are sorted by decreasing number of
nonzeros we obtain essentially the JAgged Diagonals format. If the rows are
not in the original order, then an additional vector rIdx is required, storing the
actual row index for each row in the data structure.
The multiple ELLPACK-like buffers are stacked together inside a single, one
dimensional array; an additional vector hackOffsets is provided to keep track of
the individual submatrices. All hacks have the same number of rows hackSize;
hence, the hackOffsets vector is an array of (m/hackSize) + 1 elements, each one
pointing to the first index of a submatrix inside the stacked cM/rP buffers, plus
an additional element pointing past the end of the last block, where the next
one would begin. We thus have the property that the elements of the k-th hack
are stored between hackOffsets[k] and hackOffsets[k+1], similarly to what
happens in the CSR format.

HACK OFFSET JA ARRAY AS ARRAY

11

7

2 8

1 3 9

2 8 10

3 4 7 10

Figure 3: Hacked ELLPACK compression of matrix in Figure 1

With this data structure a very long row only affects one hack, and therefore the
additional memory is limited to the hack in which the row appears.
The relevant data type is psb_T_hll_sparse_mat:

5

type, extends(psb_d_base_sparse_mat) :: psb_d_hll_sparse_mat

!

! HLL format. (Hacked ELL)

!

integer(psb_ipk_) :: hksz

integer(psb_ipk_), allocatable :: irn(:), ja(:), idiag(:),

hkoffs(:)↪→

real(psb_dpk_), allocatable :: val(:)

contains

....

end type

Diagonal storage

The DIAgonal (DIA) format (shown in Figure 4) has a 2-dimensional array AS

containing in each column the coefficients along a diagonal of the matrix, and
an integer array OFFSET that determines where each diagonal starts. The
diagonals in AS are padded with zeros as necessary.
The code to compute the matrix-vector product y = Ax is shown in Alg. 2; it
costs one memory read per outer iteration, plus three memory reads, one
memory write and two floating-point operations per inner iteration. The
accesses to AS and x are in strict sequential order, therefore no indirect
addressing is required.

-2 -1 0 1 2 7

AS ARRAY OFFSET ARRAY

Figure 4: DIA compression of matrix in Figure 1

The relevant data type is psb_T_dia_sparse_mat:

type, extends(psb_d_base_sparse_mat) :: psb_d_dia_sparse_mat

!

! DIA format, extended.

!

integer(psb_ipk_), allocatable :: offset(:)

integer(psb_ipk_) :: nzeros

real(psb_dpk_), allocatable :: data(:,:)

end type

6

do j=1,ndiag

if (offset(j) > 0) then

ir1 = 1; ir2 = m - offset(j);

else

ir1 = 1 - offset(j); ir2 = m;

end if

do i=ir1,ir2

y(i) = y(i) + alpha*as(i,j)*x(i+offset(j))

end do

end do

Algorithm 2: Matrix-Vector product in DIA format

Hacked DIA

Storage by DIAgonals is an attractive option for matrices whose coefficients are
located on a small set of diagonals, since they do away with storing explicitly
the indices and therefore reduce significantly memory traffic. However, having
a few coefficients outside of the main set of diagonals may significantly increase
the amount of needed padding; moreover, while the DIA code is easily
vectorized, it does not necessarily make optimal use of the memory hierarchy.
While processing each diagonal we are updating entries in the output vector y,
which is then accessed multiple times; if the vector y is too large to remain in
the cache memory, the associated cache miss penalty is paid multiple times.
The hacked DIA (HDIA) format was designed to contain the amount of padding,
by breaking the original matrix into equally sized groups of rows (hacks), and
then storing these groups as independent matrices in DIA format. This
approach is similar to that of HLL, and requires using an offset vector for each
submatrix. Again, similarly to HLL, the various submatrices are stacked inside
a linear array to improve memory management. The fact that the matrix is
accessed in slices helps in reducing cache misses, especially regarding accesses
to the vector y.
An additional vector hackOffsets is provided to complete the matrix format;
given that hackSize is the number of rows of each hack, the hackOffsets vector is
made by an array of (m/hackSize) + 1 elements, pointing to the first diagonal
offset of a submatrix inside the stacked offsets buffers, plus an additional
element equal to the number of nonzero diagonals in the whole matrix. We
thus have the property that the number of diagonals of the k-th hack is given by
hackOffsets[k+1] - hackOffsets[k].
The relevant data type is psb_T_hdia_sparse_mat:

type pm

real(psb_dpk_), allocatable :: data(:,:)

end type pm

type po

integer(psb_ipk_), allocatable :: off(:)

end type po

7

0 0

0

4

1 7

-1 3 5 6 7

-1

HACK OFFSET OFFSET AS ARRAY

Figure 5: Hacked DIA compression of matrix in Figure 1

type, extends(psb_d_base_sparse_mat) :: psb_d_hdia_sparse_mat

!

! HDIA format, extended.

!

type(pm), allocatable :: hdia(:)

type(po), allocatable :: offset(:)

integer(psb_ipk_) :: nblocks, nzeros

integer(psb_ipk_) :: hack = 64

integer(psb_long_int_k_) :: dim=0

contains

....

end type

2.2 GPU-class extensions

For computing on the GPU we define a dual memorization strategy in which
each variable on the CPU (“host”) side has a GPU (“device”) side. When a
GPU-type variable is initialized, the data contained is (usually) the same on
both sides. Each operator invoked on the variable may change the data so that
only the host side or the device side are up-to-date.
Keeping track of the updates to data in the variables is essential: we want to
perform most computations on the GPU, but we cannot afford the time needed
to move data between the host memory and the device memory because the
bandwidth of the interconnection bus would become the main bottleneck of the
computation. Thus, each and every computational routine in the library is built
according to the following principles:

• If the data type being handled is GPU-enabled, make sure that its device
copy is up to date, perform any arithmetic operation on the GPU, and if
the data has been altered as a result, mark the main-memory copy as
outdated.

• The main-memory copy is never updated unless this is requested by the
user either

explicitly by invoking a synchronization method;

8

implicitly by invoking a method that involves other data items that are
not GPU-enabled, e.g., by assignment ov a vector to a normal array.

In this way, data items are put on the GPU memory “on demand” and remain
there as long as “normal” computations are carried out. As an example, the
following call to a matrix-vector product

call psb_spmm(alpha,a,x,beta,y,desc_a,info)

will transparently and automatically be performed on the GPU whenever all
three data inputs a, x and y are GPU-enabled. If a program makes many such
calls sequentially, then

• The first kernel invocation will find the data in main memory, and will
copy it to the GPU memory, thus incurring a significant overhead; the
result is however not copied back, and therefore:

• Subsequent kernel invocations involving the same vector will find the
data on the GPU side so that they will run at full speed.

For all invocations after the first the only data that will have to be transferred
to/from the main memory will be the scalars alpha and beta, and the return
code info.

Vectors: The data type psb_T_vect_gpu provides a GPU-enabled extension of
the inner type psb_T_base_vect_type, and must be used together with
the other inner matrix type to make full use of the GPU computational
capabilities;

CSR: The data type psb_T_csrg_sparse_mat provides an interface to the GPU
version of CSR available in the NVIDIA CuSPARSE library;

HYB: The data type psb_T_hybg_sparse_mat provides an interface to the HYB
GPU storage available in the NVIDIA CuSPARSE library. The internal
structure is opaque, hence the host side is just CSR;

ELL: The data type psb_T_elg_sparse_mat provides an interface to the
ELLPACK implementation from SPGPU;

HLL: The data type psb_T_hlg_sparse_mat provides an interface to the
Hacked ELLPACK implementation from SPGPU;

HDIA: The data type psb_T_hdiag_sparse_mat provides an interface to the
Hacked DIAgonals implementation from SPGPU;

9

3 GPU Environment Routines

psb gpu init — Initializes PSBLAS-GPU environment

call psb_gpu_init(ctxt [, device])

This subroutine initializes the PSBLAS-GPU environment.

Type: Synchronous.

On Entry

device ID of GPU device to attach to.
Scope: local.
Type: optional.
Intent: in.
Specified as: an integer value. Default: use mod(iam,ngpu) where iam is
the calling process index and ngpu is the total number of GPU devices
available on the current node.

Notes

1. A call to this routine must precede any other PSBLAS-GPU call.

psb gpu exit — Exit from PSBLAS-GPU environment

call psb_gpu_exit(ctxt)

This subroutine exits from the PSBLAS GPU context.

Type: Synchronous.

On Entry

ctxt the communication context identifying the virtual parallel machine.
Scope: global.
Type: required.
Intent: in.
Specified as: an integer variable.

psb gpu DeviceSync — Synchronize GPU device

call psb_gpu_DeviceSync()

This subroutine ensures that all previosly invoked kernels, i.e. all invocation of
GPU-side code, have completed.

psb gpu getDeviceCount

ngpus = psb_gpu_getDeviceCount()

Get number of devices available on current computing node.

10

psb gpu getDevice

ngpus = psb_gpu_getDevice()

Get device in use by current process.

psb gpu setDevice

info = psb_gpu_setDevice(dev)

Set device to be used by current process.

psb gpu DeviceHasUVA

hasUva = psb_gpu_DeviceHasUVA()

Returns true if device currently in use supports UVA (Unified Virtual
Addressing).

psb gpu WarpSize

nw = psb_gpu_WarpSize()

Returns the warp size.

psb gpu MultiProcessors

nmp = psb_gpu_MultiProcessors()

Returns the number of multiprocessors in the GPU device.

psb gpu MaxThreadsPerMP

nt = psb_gpu_MaxThreadsPerMP()

Returns the maximum number of threads per multiprocessor.

psb gpu MaxRegistersPerBlock

nr = psb_gpu_MaxRegistersPerBlock()

Returns the maximum number of register per thread block.

psb gpu MemoryClockRate

cl = psb_gpu_MemoryClockRate()

Returns the memory clock rate in KHz, as an integer.

11

psb gpu MemoryBusWidth

nb = psb_gpu_MemoryBusWidth()

Returns the memory bus width in bits.

psb gpu MemoryPeakBandwidth

bw = psb_gpu_MemoryPeakBandwidth()

Returns the memory peak bandwidth in MB/s (real double precision).

12

References

[1] D. Barbieri, V. Cardellini, A. Fanfarillo, S. Filippone, Three storage formats
for sparse matrices on GPGPUs, Tech. Rep. DICII RR-15.6, Università di
Roma Tor Vergata (February 2015).

[2] Cardellini, V., Filippone, S., and Rouson, D. 2014, Design patterns for
sparse-matrix computations on hybrid CPU/GPU platforms, Scientific
Programming 22, 1, 1–19.

[3] S. Filippone and M. Colajanni, PSBLAS: A Library for Parallel Linear Algebra
Computation on Sparse Matrices, ACM Transactions on Mathematical
Software, 26(4), pp. 527–550, 2000.

[4] S. Filippone and A. Buttari, Object-Oriented Techniques for Sparse Matrix
Computations in Fortran 2003, ACM Transactions on Mathematical
Software, 38(4), 2012.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley.

[6] Metcalf, M., Reid, J. and Cohen, M. Modern Fortran explained. Oxford
University Press, 2011.

13

	PSBLAS-Extentions v1.0
	1 Introduction
	1.1 Application structure

	2 Data Structures
	2.1 CPU-class extensions
	2.2 GPU-class extensions

	3 GPU Environment Routines
	psb_gpu_init
	psb_gpu_exit
	psb_gpu_DeviceSync
	psb_gpu_getDeviceCount
	psb_gpu_getDevice
	psb_gpu_setDevice
	psb_gpu_DeviceHasUVA
	psb_gpu_WarpSize
	psb_gpu_MultiProcessors
	psb_gpu_MaxThreadsPerMP
	psb_gpu_MaxRegisterPerBlock
	psb_gpu_MemoryClockRate
	psb_gpu_MemoryBusWidth
	psb_gpu_MemoryPeakBandwidth

