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Motivation: EoCoE-II project

Energy oriented Center of Excellence: toward exascale for energy

applying cutting-edge computational methods to accelerate the transition to the
production, storage and management of clean, decarbonized energy

Wind Materials

Water Fusion

Main aim

prepare selected numerical models to be run on (future) exascale supercomputers
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Key Computational Kernel

Poisson-type PDE

−∇ ·K∇u = f in Ω

αu+ β
∂u

∂~n
in ∂Ω

Ax = b, A ∈ Rn×n (s.p.d.) x,b ∈ Rn

n >> 109

sparsity degree = 1− nnz

n2
≈ 1

Wind applications from Barcelona Supercomputing Center (BSC)

high-resolution LES models in wind farm applications require (block structured)
meshes with more than ten billions (> 1010) dofs
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Parallel Sparse Computation Toolkit

Parallel Sparse Basic
Linear Algebra
Subroutines

+
its GPU-plugin

AMG Preconditioners
for PSBLAS

Available from https://psctoolkit.github.io/
Recently selected as Excellent Innovation from EU Innovation Radar
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PSBLAS

A Software development project started in the early 2000s, prompted by the work
of Iain Du� et al. on standard for Sparse BLAS, ACM TOMS 23 (1997)

parallel sparse matrix operations and data structures management,
Krylov solvers (for spd and general matrices)

general row-block matrix distribution, support infrastructure for mesh
handling and sparse matrix I/O

data allocation through graph partitioning (METIS, ParMETIS, SCOTCH)

object oriented design in Fortran 2003/2008

S. Filippone et al., PSBLAS: A library for parallel linear algebra computation on sparse
matrices, ACM TOMS, 26, 4, 2000.
S. Filippone et al., Object-Oriented Techniques for Sparse Matrix Computations in
Fortran 2003. ACM TOMS, 38, 4, 2012.
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PSBLAS (contd.)

message-passing paradigm (MPI), CUDA plugin

internal matrix representation/storage: distributed sparse matrix with native
CSR/CSC/COO format, extension plugin for many other storage formats,
including CUDA-enabled (DIAG, ELLPACK and variations)

multiple tools for storage transformations

tools and data structures for global/local index mapping (long/short integers
for global/local numbering handled separately) and halo data exchange;

Memory footprint (essential for scalability)

matrices: proportional to number of local rows/indices (may require padding
for vectorization on GPUs and similar)

vectors: proportional to local indices plus halo indices

data exchange auxiliary storage: proportional to number of boundary plus
halo indices

global/local index mappings: proportional to local plus halo indices (may
trade more memory for speed if acceptable)
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AMG4PSBLAS: AMG Preconditioners for PSBLAS

A software development project started in 2004

initially developed as a package of algebraic multigrid Schwarz
preconditioners, extended to more general AMG preconditioning within
EoCoE

object-oriented design in Fortran 2003/2008, layered sw architecture on top
of PSBLAS
=⇒ modularity and �exibility

clear separation between interface and implementation of methods
=⇒ performance and extensibility (e.g. works transparently on GPUs)

separated users' interface for setup of the multigrid hierarchy and setup of
the smoothers and solvers to have large �exibility at each level

P. D'Ambra et al., MLD2P4: a Package of Parallel Algebraic Multilevel Domain
Decomposition Preconditioners in Fortran 95, ACM TOMS, 37, 3, 2010
P. D'Ambra et al., AMG preconditioners for Linear Solvers towards Extreme Scale.
Preprint arXiv:2006.16147 (to appear on SISC)
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AMG Preconditioners

Example: symmetric V-cycle

procedure V-cycle
(
k, nlev,Ak, bk, xk

)
if (k 6= nlev) then

xk = xk + (Mk)−1
(
bk −Akxk

)
bk+1 = (P k+1)T

(
bk −Akxk

)
xk+1 = V-cycle

(
k + 1, Ak+1, bk+1, 0

)
xk = xk + P k+1xk+1

xk = xk + (Mk)−T
(
bk −Akxk

)
else

xk =
(
Ak

)−1
bk

endif

return xk

end

AMG methods do not explicitly use the problem geometry and

rely only on matrix entries to generate coarse grids (setup phase)
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Scalable (optimal) preconditioners

Solve the system:
B−1Ax = B−1b,

with matrix B ≈ A−1 (left preconditioner) such that:

µ(B−1A) ≈ 1, being independent of n (algorithmic scalability)
the action of B−1 costs as little as possible, the best being O(n) �ops (linear
complexity)
in a massively parallel computer, B−1 should be composed of local actions,
(implementation scalability, i.e., performance linearly proportional to
the number of processors employed)

MultiGrid performance parameters

convergence rate ρ < 1: a�ects number of solver iterations

operator complexity opc =
∑nlev−1

k=0 nnz(Ak)

nnz(A0) : a�ects memory requirements

and cycle time

average stencil size s(Ak) = nnz_row(Ak): a�ects computation and
communication both in setup and in cycle time
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AMG4PSBLAS extensions for EoCoE
AMG4PSBLAS preconditioners can be obtained as combination of

setup or coarsening phase: parallel decoupled/coupled

DVB smoothed aggregation based on the usual strength
of connection measure (Van¥k and Brezina, 1996)

CMATCH smoothed and unsmoothed aggregation based on
compatible weighted matching (D'Ambra et al.,
2013, 2016, 2018, 2021)

solve phase: available on GPU for many choices of smoothers & coarsest
solver

cycles V, W, K
smoothers Jacobi and l1-Jacobi, hybrid (F/B) Gauss-Seidel and

l1-GS, block-Jacobi / additive Schwarz with LU, ILU
factorizations or sparse approximate inverses of the
blocks

coarsest-solvers sparse LU, Jacobi and l1-Jacobi, hybrid (F/B)
Gauss-Seidel and l1-GS, block-Jacobi with LU, ILU
factorizations or sparse approximate inverses of the
blocks, iterative preconditioned Krylov solvers
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Parallel coarsening based on compatible weighted matching
(CMATCH)
Let w ∈ Rn smooth vector, let Pc ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator
and a complementary prolongator, such that:

Rn = Range(Pc)⊕⊥ Range(Pf ), n = nc + nf

w ∈ Range(Pc) : coarse space Range(Pf ) : complementary space

[Pc, Pf ]TA[Pc, Pf ] =

(
PT
c APc PT

c APf

PT
f APc PT

f APf

)
=

(
Ac Acf

Afc Af

)
Ac : coarse matrix Af : hierarchical complement

Su�cient condition for e�cient coarsening

Af = PT
f APf as well conditioned as possible,

i.e., convergence rate of compatible relaxation ρf = ‖I −M−1f Af‖Af
<< 1

Our idea (D'Ambra et al., 2013, 2016, 2018)

build Pc (and Pf ) by dofs aggregation based on matching in the weighted
(adjacency) graph of A, to make Af as diagonally-dominant as possible
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CMATCH (cont'd)

Input: A matrix, w (smooth) vector,
maxsize maximum coarsest size
Output: hierarchy of coarse matrices Ak

1 A1 = A, k = 1, w1 = w
2 while size(Ak) > maxsize

2.1 apply parallel matching-based pairwise aggregation to the graph of Ak with
weigths depending on wk

2.2 build P k
c , R

k
c = (P k

c )
T and Ak

c = Rk
cA

kP k
c

2.3 Ak+1 = Ak
c , wc = Rk

cw
k

2.4 k = k + 1

endwhile

Increasing Coarsening Ratio for Reducing Complexity

Consecutive levels based on pairwise aggregation can be combined,
e.g., double pairwise can be obtained by:

P
k

= P 2k−1P 2k, R
k

= (P
k
)T , A

k
= A2k, k = 1, . . . dnl/2e
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CMATCH (cont'd)

Approximation algorithms & parallel software

e�cient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

quality guarantee of the computed matching, generally 1/2−approximation to
a maximum weight matching

linear-time O(nnz) complexity

available software in source form (MatchBox-P by Halappanavar et al.)

Main advantages of CMATCH

a completely automatic procedure applicable to general s.p.d. systems,
independent of any heuristics or a priori information on the near kernel of A

well-balanced coarse matrices among parallel processes, no need for special
treatment of process-boundary dofs accounting for inter-processes coupling

signi�cant �exibility in the choice of the size of aggregates, almost arbitrarily
aggressive coarsening

possible improving in V-cycle convergence, by smoothing of matching-based
prolongators as in classic smoothed aggregation
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Test Case

Poisson equation

−∆u = 1 on unit cube, with DBC

7-point �nite-di�erence discretization

cartesian grid with uniform re�nement along the coordinates for increasing
mesh size

Solver/preconditioner settings

AMG as preconditioner of Flexible CG, stopped when ‖rk‖2/‖b‖2 ≤ 10−6, or
itmax = 500

KCMATCH K-cycle with 2 inner iterations, CMATCH building aggregates
of max size 8, unsmoothed prolongators

VSCMATCH V-cycle, CMATCH building aggregates of max size 8,
smoothed prolongators

VSDVB V-cycle for decoupled classic smoothed aggregation

1 sweep of forward/backward Hybrid Gauss-Seidel smoother, parallel CG
preconditioned with Block-Jacobi and ILU(0) at the coarsest level

coarsest matrix size nc ≤ 200np, with np number of cores
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Experimental environment & Comparison

Piz Daint - Swiss National Supercomputing Center by PRACE

Cray Model XC40/Cray XC50 architecture with 5704 hybrid compute nodes
(Intel Xeon E5-2690 v3 with Nvidia Tesla P100 accelerator)

Cray Aries routing and communications ASIC with Dragon�y network
topology

GNU compiler rel. 8, Cray MPI 7, Cray-libsci 20.09.1

PSBLAS 3.7, AMG4PSBLAS 1.0

Hypre: Scalable Linear Solvers and Multigrid Methods by LLNL

BoomerAMG as preconditioner of CG, stopped when ‖rk‖2/‖b‖2 ≤ 10−6, or
itmax = 500

V-cycle with 1 sweep of forward/backward Hybrid Gauss-Seidel smoother, LU
factorization at the coarsest level

3 coarsening schemes: hybrid RS/CLJP (Flg), Hybrid Maximal Independent
Set (HMIS), HMIS with �rst level of aggressive coarsening (HMIS1);
default parameters for coarsest matrix size 1 ≤ nc ≤ 9, coupled with modi�ed
(long-range) classical interpolation
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Weak scaling (256K dofs per core): algorithmic scalability

AMG4PSBLAS Hypre
np n/106 KCMATCH VSCMATCH VSDVB Flg HMIS HMIS1

1 0.256 12 7 11 6 6 12
2 0.512 12 7 12 7 9 15
22 1.036 12 7 13 7 12 17
23 2.048 12 7 14 8 13 17
24 4.075 12 8 14 8 14 20
25 8.049 13 9 15 8 14 20
26 16.384 12 8 15 9 16 22
27 32.604 12 8 15 10 18 25
28 63.917 13 9 16 10 20 27
29 131,072 14 8 18 11 22 29
210 256,000 15 8 17 12 25 32
211 511,335 16 12 21 13 29 37
212 1024,192 15 8 26 13 35 40
213 2097,152 16 9 27 14 37 44

Table: Number of iterations for solve
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Weak scaling (256K dofs per core): operator complexity
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Weak scaling (256K dofs per core): solve time
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Weak scaling (256K dofs per core): setup time
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Results at extreme scale: MPI vs hybrid MPI-CUDA
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Concluding Remarks and Work in Progress

PSCToolkit is a new software framework addressing scalability, �exibility and
robusteness for high-performance scienti�c computing at extreme scale

the new parallel coarsening algorithm based on compatible weighted
matching, used in conjunction with smoothed prolongators and highly parallel
smoothers, shows algorithmic and implementation scalability

we solve systems with size larger than 1010 on current pre-exascale
computers, embedding hybrid CPU-GPU nodes, in less than 3 seconds

scalability results and comparison with available software demonstrates the
validity of our approaches both in terms of algorithms and in terms of
software development

integration and testing within very large scale wind simulations and
hydrologycal applications, in collaborations with BSC and JSC, is work in
progress

Thanks for Your Attention

This work was performed with support of the European Union's Horizon 2020 research

and innovation programme under grant agreement N. 824158
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