
PSCTOOLKIT:
Parallel Sparse Computation Toolkit
Math Product (M P): Emerging Technologies in Computational

Science for Industry, Sustainability and Innovation

F. Durastante♠,♡

(♠Università d Pisa
♡Consiglio Nazionale delle Ricerche)

IS b – Mathematical software for Computational and Data Science at Extreme scales

May ,

/

mailto:fabio.durastante@unipi.it

Collaborators & Funding
With a Little Help from My Friends

Pasqua D’Ambra,
Consiglio Nazionale delle Ricerche

Istituto per le Applicazioni del Calcolo
“M. Picone”

Salvatore Filippone,
Università degli Studi di Roma “Tor Vergata”

Dipartimento di Ingegneria Civile e
Ingegneria Informatica

IAC-CNR

Leonardo Early Access Program (LEAP). Computing
time on the Leonardo HPC System for the project
“PSCToolkit for Sparse Matrix Computations at
Extreme Scales.”

This work has been supported by the Spoke
“FutureHPC & BigData” of the Italian Research Center
on High-Performance Computing, Big Data and
Quantum Computing (ICSC) funded by MUR Missione
Componente Investimento . : Potenziamento

strutture di ricerca e creazione di “campioni nazionali
di R&S (M C -)”, and the Spoke “Multiscale
modelling & Engineering applications” - Next
Generation EU (NGEU).

/

Table of Contents
The Model Problem

▶ The Model Problem

▶ The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

▶ Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

/

What we want to solve
The Model Problem

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of
computational science and engineering problems,

the exascale challenge, using computer that perform 1015 Flops, targeting next-gen
systems performing 1018 Flops to solve problems with tens of billions of unknowns.

/

What we want to solve
The Model Problem

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

is often the most time consuming computational kernel in many areas of
computational science and engineering problems,
the exascale challenge, using computer that perform 1015 Flops, targeting next-gen
systems performing 1018 Flops to solve problems with tens of billions of unknowns.

/

Table of Contents
The Parallel Sparse Computation Toolkit

▶ The Model Problem

▶ The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

▶ Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

/

Parallel Sparse Computation Toolkit – psctoolkit.github.io
The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG PSBLAS:

• Existing software standards:
— MPI, OpenMP, CUDA
— Serial sparse BLAS,

— (Par)Metis,
— AMD

• Attention to performance using modern Fortran;

• Research on new preconditioners;

• No need to delve in the data structures for the user;

• Tools for error and mesh handling beyond simple algebraic operations;

• Standard Krylov solvers

/

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io
The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG PSBLAS:

• Domain decomposition preconditioners

• Algebraic multigrid with aggregation schemes

— Parallel coupled weightedmatching based aggregation ,

— Parallel decoupled smoothed aggregation (Vaněk, Brezina,Mandel)

• Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS, ℓ1
variants) that can be coupled with specialized block (approximate) solvers
MUMPS, SuperLU, incomplete factorizations (AINV, INVK/L, ILU-type)

• V-Cycle, W-Cycle, K-Cycle
P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for bootstrap AMG based on graph
weighted matching, ACM Trans. Math. Software (), no. , Art. , pp.

P. D’Ambra, F. D. and S. Filippone, AMG preconditioners for linear solvers towards extreme scale, SIAM J. Sci. Comput.
(), no. , S –S .

/

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io
The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG PSBLAS.

Freely available from: https://psctoolkit.github.io,

Open Source with BSD Clause License.

P. D’Ambra, F. D., and S. Filippone, Parallel Sparse Computation Toolkit,
Software Impacts (): .

git clone git@github.com:psctoolkit/psctoolkit.git
(cd psblas3; ./configure; make -j; make install)
(cd psblas3-ext; ./configure; make -j; make install)
(cd amg4psblas; ./configure; make -j; make install)

/

psctoolkit.github.io
https://psctoolkit.github.io

Algebraic Multigrid Preconditioners
The Parallel Sparse Computation Toolkit

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to precondition the CG
method:
• Hierarchy of systems

Alx=bl, l = 0, . . . , nlev

• Transfer operators:
Pl
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother: “High frequencies”

Ml : Rnl → Rnl

Prolongator: “Low frequencies”

Pll+1 : Rnl → Rnl+1

Complementarity of Smoother and Prolongator

/

What are we looking for?
The Parallel Sparse Computation Toolkit

Solve the preconditioned system:
B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi(B−1A) ≈ 1 being independent of n,

Linear complexity the action of B−1 costs as little as possible, the best beingO(n) flops,

Implementation scalability in a massively parallel computer, B−1 should be composed of local
actions, performance should depend linearly on the number of computing units
employed (MPI Tasks, OpenMP Threads, GPUs).

/

What is our recipe?
The Parallel Sparse Computation Toolkit

• The smootherM is a standard iterative solver with good parallel properties, e.g.,
ℓ1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

• The coarse solver can be (again) a preconditioned CG method.

/

What is our recipe?
The Parallel Sparse Computation Toolkit

• The smootherM is an iterative solver with good parallel properties:
GS A = M− N, withM = L+ D and N = −LT, where D = diag(A) and L = tril(A) is

intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process

the method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LTpp for Dpp = diag(App) and Lpp = tril(App) then:

Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

(Mℓ1−HGS)p =Lpp + Dpp + Dℓ1p,

(dℓ1)
nb
i=1 =

∑
j∈Ωnb

p

|aij|.
Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

AINV Block-Jacobi with an approximate inverse factorization on the block⇒ suitable for GPUs

/

What is our recipe?
The Parallel Sparse Computation Toolkit

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

Givenw ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a complementary
prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf

w ∈ Range(P): coarse space Range(Pf): complementary space

[P, Pf]
TA[P, Pf] =

(
PTAP PTAPf
PTf AP PTf APf

)
=

(
Ac Acf
Afc Af

)
Ac: coarse matrix Af: hierarchical complement

Sufficient condition for efficient coarsening
Af = PTf APf as well conditioned as possible, i.e.,

Convergence rate of compatible relaxation: ρf = ∥I−M−1
f Af∥Af ≪ 1/

Parallel Matching Algorithms
The Parallel Sparse Computation Toolkit

. What is the best matching algorithm from a
computational point of view?

. Can we do an approximate global matching over
the whole graph for better aggregation quality?

Algorithm: Locally Dominant Edge

Input: Graph G = (V, E), Weights Â
M← ∅;
while E ̸= ∅ do

Take a locally dominant edge (i, j) ∈ E , i.e., such
that

argmax
k

âik = argmax
k

âjk = âij

Add (i, j) ∈M;
Remove all edges incident to i and j from E ;

end
Output: MatchingM

Ü. V. Çatalyürek, F. Dobrian, A. Gebremedhin, M. Halappanavar and A. Pothen, Distributed-Memory Parallel
Algorithms for Matching and Coloring, IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, Anchorage, AK, USA, , pp. - , doi: . /IPDPS. . .

/

Table of Contents
Pre-Exascale Results

▶ The Model Problem

▶ The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

▶ Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

/

The supercomputer of the TOP : www.top .org
Pre-Exascale Results

System Cores Power (kW)

Frontier - HPE Cray EX a, AMD Optimized rd Generation EPYC
C GHz, AMD Instinct MI X, Slingshot- , HPE DOE/SC/Oak Ridge

National Laboratory United States

, , ,

Supercomputer Fugaku - Supercomputer Fugaku, A FX C
. GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational
Science Japan

, , ,

LUMI - HPE Cray EX a, AMD Optimized rd Generation EPYC C
GHz, AMD Instinct MI X, Slingshot- , HPE EuroHPC/CSC Finland

, , ,

Leonardo - BullSequana XH , Xeon Platinum C . GHz,
NVIDIA A SXM GB, Quad-rail NVIDIA HDR Infiniband, Atos
EuroHPC/CINECA Italy

, , ,

Summit - IBM Power System AC , IBM POWER C . GHz,
NVIDIA Volta GV , Dual-rail Mellanox EDR Infiniband, IBM
DOE/SC/Oak Ridge National Laboratory United States

, , ,

Leonardo

NVIDIA A
Top : June List.

/

https://www.top500.org/lists/top500/list/2023/06/

D Poisson Problem
Pre-Exascale Results

Finite Differences discretization of

{
−∇2u = 1, x ∈ [0, 1]3

u(x) = 0, x ∈ ∂[0, 1]3. 6ui,j,k

−ui,j,k−1

−ui,j,k+1

−ui+1,j,kui−1,j,k

−ui,j+1,k

−ui,j−1,k

Data distribution:
— For PSCToolkit we use a block D Distribution,
— For AMGX we use the amgx_mpi_poisson7 tester.

Solver is Flexible Conjugate Gradient and CG for PSCToolkit and AMGX respectively,
tolerance 10−6.

/

Weak Scaling
Pre-Exascale Results

In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.
We use 8× 106 unknowns per GPU, i.e., 3.2× 107 unknowns per node.

We use the following resources:
Number of GPUs from to ,
GPUs x Node (MPI Task x GPU, CPUs per Task)
Pure MPI: MPI Tasks per Node

Within the software framework:
Compilers: gcc/11.3.0
MPI: openmpi/4.1.4
CUDA compilation tools, release 11.8, V11.8.89

/

Algorithms
Pre-Exascale Results

Aggregation: VBM, Cycle: V, Smoother: ℓ1-Jacobi, Coarse
Solver: PCG + ℓ1-Jacobi,
Aggregation: Smoothed Matching, Cycle: V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,
Aggregation: Matching, Cycle: Variable V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,

Coarsening: Classical Algebraic Multigrid, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, sweeps
Aggregation: (Iterative) Parallel Graph Matching, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, sweeps

/

Operator Complexity
Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,

/

Operator Complexity
Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,
, , , , ,

/

Operator Complexity
Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

, , , , ,
, , , , ,

, , ,

/

Algorithmic Scalability: Iteration Count
Pre-Exascale Results

101

102

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

/

Implementation Scalability: Solve Time (s)
Pre-Exascale Results

100

101

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

/

Implementation Scalability: Time× Iteration (s)
Pre-Exascale Results

10−1

100

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

/

Best Solve Time vs Global System Size
Pre-Exascale Results

107 108 109 1010 1011
10−1

100

101

102

VBMVCYCLE-HLG
VCYCLE-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VCYCLE-MPI

Largest System Size is: 67121414144 ≈ 7× 1010.

/

Plans for the Future
Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from s (GPU) to

s (GPUs): too much!
— There is an undergoing effort for moving it to the GPUs and we are planning to include

it in PSCToolkit,
— We are also investigating alternative algorithmic approaches and the possibility of a

multithreaded version.
Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.
Bernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver

for GPUs.” Software Impacts (): .

/

Plans for the Future
Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from s (GPU) to

s (GPUs): too much!

— There is an undergoing effort for moving it to the GPUs and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.
Bernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver

for GPUs.” Software Impacts (): .

/

Plans for the Future
Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from s (GPU) to

s (GPUs): too much!
— There is an undergoing effort for moving it to the GPUs and we are planning to include

it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

Bernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts (): .

/

Plans for the Future
Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from s (GPU) to

s (GPUs): too much!
— There is an undergoing effort for moving it to the GPUs and we are planning to include

it in PSCToolkit,
— We are also investigating alternative algorithmic approaches and the possibility of a

multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.
Bernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver

for GPUs.” Software Impacts (): .

/

Plans for the Future
Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from s (GPU) to

s (GPUs): too much!
— There is an undergoing effort for moving it to the GPUs and we are planning to include

it in PSCToolkit,
— We are also investigating alternative algorithmic approaches and the possibility of a

multithreaded version.
Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

Bernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts (): .

/

PSCTOOLKIT:
Parallel Sparse Computation Toolkit

Thank you for listening!
Any questions?

/

	With a Little Help from My Friends
	The Model Problem
	The Parallel Sparse Computation Toolkit
	AMG Algorithms
	Parallel Matching Algorithms

	Pre-Exascale Results
	The Machines
	Test Problem
	Weal Scaling Results
	Plans for the Future

