
PSCTOOLKIT:
Parallel Sparse Computation Toolkit
Math ŵ Product (MŵP): Emerging Technologies in Computational

Science for Industry, Sustainability and Innovation

F. Durastante♠,♡

(♠Università d Pisa
♡Consiglio Nazionale delle Ricerche)

ISųŻb – Mathematical software for Computational and Data Science at Extreme scales

May ŶŴ, ŵųŵŶ

Ŵ/ŵŵ

mailto:fabio.durastante@unipi.it

Collaborators & Funding
Ŵ With a Little Help from My Friends

Pasqua D’Ambra,
Consiglio Nazionale delle Ricerche

Istituto per le Applicazioni del Calcolo
“M. Picone”

Salvatore Filippone,
Università degli Studi di Roma “Tor Vergata”

Dipartimento di Ingegneria Civile e
Ingegneria Informatica

IAC-CNR

Leonardo Early Access Program (LEAP). Computing
time on the Leonardo HPC System for the project
“PSCToolkit for Sparse Matrix Computations at
Extreme Scales.”

This work has been supported by the Spoke Ŵ
“FutureHPC & BigData” of the Italian Research Center
on High-Performance Computing, Big Data and
Quantum Computing (ICSC) funded by MUR Missione
ŷ Componente ŵ Investimento Ŵ.ŷ: Potenziamento
strutture di ricerca e creazione di “campioni nazionali
di R&S (MŷCŵ-Ŵż)”, and the Spoke Ź “Multiscale
modelling & Engineering applications” - Next
Generation EU (NGEU).

ŵ/ŵŵ

Table of Contents
ŵ The Model Problem

▶ The Model Problem

▶ The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

▶ Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

Ŷ/ŵŵ

What we want to solve
ŵ The Model Problem

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of
computational science and engineering problems,

the exascale challenge, using computer that perform 1015 Flops, targeting next-gen
systems performing 1018 Flops to solve problems with tens of billions of unknowns.

ŷ/ŵŵ

What we want to solve
ŵ The Model Problem

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

is often the most time consuming computational kernel in many areas of
computational science and engineering problems,
the exascale challenge, using computer that perform 1015 Flops, targeting next-gen
systems performing 1018 Flops to solve problems with tens of billions of unknowns.

ŷ/ŵŵ

Table of Contents
Ŷ The Parallel Sparse Computation Toolkit

▶ The Model Problem

▶ The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

▶ Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

Ÿ/ŵŵ

Parallel Sparse Computation Toolkit – psctoolkit.github.io
Ŷ The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMGŷPSBLAS:

• Existing software standards:
— MPI, OpenMP, CUDA
— Serial sparse BLAS,

— (Par)Metis,
— AMD

• Attention to performance using modern Fortran;

• Research on new preconditioners;

• No need to delve in the data structures for the user;

• Tools for error and mesh handling beyond simple algebraic operations;

• Standard Krylov solvers

Ź/ŵŵ

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io
Ŷ The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMGŷPSBLAS:

• Domain decomposition preconditioners

• Algebraic multigrid with aggregation schemes

— Parallel coupled weightedmatching based aggregationŴ,ŵ
— Parallel decoupled smoothed aggregation (Vaněk, Brezina,Mandel)

• Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS, ℓ1
variants) that can be coupled with specialized block (approximate) solvers
MUMPS, SuperLU, incomplete factorizations (AINV, INVK/L, ILU-type)

• V-Cycle, W-Cycle, K-Cycle
Ŵ P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for bootstrap AMG based on graph
weighted matching, ACM Trans. Math. Software ŷŷ (ŵųŴŻ), no. ŷ, Art. Ŷż, ŵŸ pp.

ŵ P. D’Ambra, F. D. and S. Filippone, AMG preconditioners for linear solvers towards extreme scale, SIAM J. Sci. Comput. ŷŶ
(ŵųŵŴ), no. Ÿ, SŹźż–SźųŶ.

Ź/ŵŵ

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io
Ŷ The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMGŷPSBLAS.

Freely available from: https://psctoolkit.github.io,

Open Source with BSD Ŷ Clause License.

P. D’Ambra, F. D., and S. Filippone, Parallel Sparse Computation Toolkit,
Software Impacts (ŵųŵŶ): ŴųųŷŹŶ.

git clone git@github.com:psctoolkit/psctoolkit.git
(cd psblas3; ./configure; make -j; make install)
(cd psblas3-ext; ./configure; make -j; make install)
(cd amg4psblas; ./configure; make -j; make install)

Ź/ŵŵ

psctoolkit.github.io
https://psctoolkit.github.io

Algebraic Multigrid Preconditioners
Ŷ The Parallel Sparse Computation Toolkit

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to precondition the CG
method:
• Hierarchy of systems

Alx=bl, l = 0, . . . , nlev

• Transfer operators:
Pl
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother: “High frequencies”

Ml : Rnl → Rnl

Prolongator: “Low frequencies”

Pll+1 : Rnl → Rnl+1

Complementarity of Smoother and Prolongator

ź/ŵŵ

What are we looking for?
Ŷ The Parallel Sparse Computation Toolkit

Solve the preconditioned system:
B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi(B−1A) ≈ 1 being independent of n,

Linear complexity the action of B−1 costs as little as possible, the best beingO(n) flops,

Implementation scalability in a massively parallel computer, B−1 should be composed of local
actions, performance should depend linearly on the number of computing units
employed (MPI Tasks, OpenMP Threads, GPUs).

Ż/ŵŵ

What is our recipe?
Ŷ The Parallel Sparse Computation Toolkit

• The smootherM is a standard iterative solver with good parallel properties, e.g.,
ℓ1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

• The coarse solver can be (again) a preconditioned CG method.

ż/ŵŵ

What is our recipe?
Ŷ The Parallel Sparse Computation Toolkit

• The smootherM is an iterative solver with good parallel properties:
GS A = M− N, withM = L+ D and N = −LT, where D = diag(A) and L = tril(A) is

intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process

the method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LTpp for Dpp = diag(App) and Lpp = tril(App) then:

Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

(Mℓ1−HGS)p =Lpp + Dpp + Dℓ1p,

(dℓ1)
nb
i=1 =

∑
j∈Ωnb

p

|aij|.
Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

AINV Block-Jacobi with an approximate inverse factorization on the block⇒ suitable for GPUs

ż/ŵŵ

What is our recipe?
Ŷ The Parallel Sparse Computation Toolkit

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

Givenw ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a complementary
prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf

w ∈ Range(P): coarse space Range(Pf): complementary space

[P, Pf]
TA[P, Pf] =

(
PTAP PTAPf
PTf AP PTf APf

)
=

(
Ac Acf
Afc Af

)
Ac: coarse matrix Af: hierarchical complement

Sufficient condition for efficient coarsening
Af = PTf APf as well conditioned as possible, i.e.,

Convergence rate of compatible relaxation: ρf = ∥I−M−1
f Af∥Af ≪ 1ż/ŵŵ

Parallel Matching Algorithms
Ŷ The Parallel Sparse Computation Toolkit

Ŵ. What is the best matching algorithm from a
computational point of view?

ŵ. Can we do an approximate global matching over
the whole graph for better aggregation quality?

Ŵ Algorithm: Locally Dominant Edge

Input: Graph G = (V, E), Weights Â
ŵ M← ∅;
Ŷ while E ̸= ∅ do
ŷ Take a locally dominant edge (i, j) ∈ E , i.e., such

that

argmax
k

âik = argmax
k

âjk = âij

Add (i, j) ∈M;
Ÿ Remove all edges incident to i and j from E ;
Ź end

Output: MatchingM

Ü. V. Çatalyürek, F. Dobrian, A. Gebremedhin, M. Halappanavar and A. Pothen, Distributed-Memory Parallel
Algorithms for Matching and Coloring, ŵųŴŴ IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, Anchorage, AK, USA, ŵųŴŴ, pp. ŴżźŴ-ŴżŻų, doi: Ŵų.ŴŴųż/IPDPS.ŵųŴŴ.ŶŹų.

Ŵų/ŵŵ

Table of Contents
ŷ Pre-Exascale Results

▶ The Model Problem

▶ The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

▶ Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

ŴŴ/ŵŵ

The supercomputer of the TOPŸųų: www.topŸųų.org
ŷ Pre-Exascale Results

SystemŴ Cores Power (kW)

Ŵ Frontier - HPE Cray EXŵŶŸa, AMD Optimized Ŷrd Generation EPYC
ŹŷC ŵGHz, AMD Instinct MIŵŸųX, Slingshot-ŴŴ, HPE DOE/SC/Oak Ridge
National Laboratory United States

Ż,Źżż,żųŷ ŵŵ,źųŶ

ŵ Supercomputer Fugaku - Supercomputer Fugaku, AŹŷFX ŷŻC
ŵ.ŵGHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational
Science Japan

ź,ŹŶų,ŻŷŻ ŵż,Żżż

Ŷ LUMI - HPE Cray EXŵŶŸa, AMD Optimized Ŷrd Generation EPYC ŹŷC
ŵGHz, AMD Instinct MIŵŸųX, Slingshot-ŴŴ, HPE EuroHPC/CSC Finland

ŵ,ŵŵų,ŵŻŻ Ź,ųŴŹ

ŷ Leonardo - BullSequana XHŵųųų, Xeon Platinum ŻŶŸŻ ŶŵC ŵ.ŹGHz,
NVIDIA AŴųų SXMŷ Źŷ GB, Quad-rail NVIDIA HDRŴųų Infiniband, Atos
EuroHPC/CINECA Italy

Ŵ,Żŵŷ,źŹŻ ź,ŷųŷ

Ÿ Summit - IBM Power System ACżŵŵ, IBM POWERż ŵŵC Ŷ.ųźGHz,
NVIDIA Volta GVŴųų, Dual-rail Mellanox EDR Infiniband, IBM
DOE/SC/Oak Ridge National Laboratory United States

ŵ,ŷŴŷ,Ÿżŵ Ŵų,ųżŹ

Leonardo

NVIDIA AŴųų
Ŵ TopŸųų: June ŵųŵŶ List.

Ŵŵ/ŵŵ

https://www.top500.org/lists/top500/list/2023/06/

ŶD Poisson Problem
ŷ Pre-Exascale Results

Finite Differences discretization of

{
−∇2u = 1, x ∈ [0, 1]3

u(x) = 0, x ∈ ∂[0, 1]3. 6ui,j,k

−ui,j,k−1

−ui,j,k+1

−ui+1,j,kui−1,j,k

−ui,j+1,k

−ui,j−1,k

Data distribution:
— For PSCToolkit we use a block ŶD Distribution,
— For AMGX we use the amgx_mpi_poisson7 tester.

Solver is Flexible Conjugate Gradient and CG for PSCToolkit and AMGX respectively,
tolerance 10−6.

ŴŶ/ŵŵ

Weak Scaling
ŷ Pre-Exascale Results

In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.
We use 8× 106 unknowns per GPU, i.e., 3.2× 107 unknowns per node.

We use the following resources:
Number of GPUs from Ŵ to ŻŴżŵ,
GPUs x Node ŷ (Ŵ MPI Task x GPU, Ż CPUs per Task)
Pure MPI: Ŷŵ MPI Tasks per Node

Within the software framework:
Compilers: gcc/11.3.0
MPI: openmpi/4.1.4
CUDA compilation tools, release 11.8, V11.8.89

Ŵŷ/ŵŵ

Algorithms
ŷ Pre-Exascale Results

Aggregation: VBM, Cycle: V, Smoother: ℓ1-Jacobi, Coarse
Solver: PCG + ℓ1-Jacobi,
Aggregation: Smoothed Matching, Cycle: V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,
Aggregation: Matching, Cycle: Variable V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,

Coarsening: Classical Algebraic Multigrid, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, ŷų sweeps
Aggregation: (Iterative) Parallel Graph Matching, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, ŷų sweeps

ŴŸ/ŵŵ

Operator Complexity
ŷ Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

Ŵ Ŵ,ŸźŸ Ŵ,Żżŷ Ŵ,Ŵŷŵ ŷ,ŷŸŷŸŹ Ŵ,ŵźżźż
ŵ Ŵ,ŸźŻ Ŵ,żųŸ Ŵ,Ŵŷŵ ŷ,ŷŶŸźŹ Ŵ,ŶŴŴŻź
ŷ Ŵ,ŸŻ Ŵ,żŴŸ Ŵ,ŴŷŶ ŷ,ŸŴŶźź Ŵ,ŶŶŴŴź
Ż Ŵ,ŸŻŶ Ŵ,żŴź Ŵ,Ŵŷŵ ŷ,ŸŵŶźŹ Ŵ,ŶŶŴŹŵ
ŴŹ Ŵ,ŸŻŷ Ŵ,żŵŸ Ŵ,ŴŷŶ ŷ,ŸŴŵŶż Ŵ,ŶŵŴŶŶ

ŴŹ/ŵŵ

Operator Complexity
ŷ Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

Ŷŵ Ŵ,ŸŻŷ Ŵ,żŶ Ŵ,ŴŷŶ ŷ,ŷżŸżŸ Ŵ,ŶŴŻŻź
Źŷ Ŵ,ŸŻź Ŵ,żŶ Ŵ,ŴŷŶ ŷ,ŸųŴŶŸ Ŵ,ŶŴżŴŷ
ŴŵŻ Ŵ,ŸŻŻ Ŵ,żŶŹ Ŵ,ŴŷŶ ŷ,ŷżżŵŸ Ŵ,ŶŴŷŵŴ
ŵŸŹ Ŵ,ŸŻź Ŵ,żųŸ Ŵ,Ŵŷŷ ŷ,ŷżŵŸŵ Ŵ,ŶŴŶŴŷ
ŸŴŵ Ŵ,ŸŻż Ŵ,żŶź Ŵ,ŴŷŶ ŷ,ŷżŸŵ Ŵ,ŶŴŶŵż
Ŵųŵŷ Ŵ,ŸŻŻ Ŵ,żŷŵ Ŵ,Ŵŷŷ ŷ,ŷżŸųŶ Ŵ,ŶŴųżŴ

ŴŹ/ŵŵ

Operator Complexity
ŷ Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

ŵųŷŻ Ŵ,Ÿż Ŵ,żŶż Ŵ,ŴŷŶ ŷ,ŷżŵŴ Ŵ,ŶŴųŷŴ
ŷųżŹ Ŵ,ŸŻŻ Ŵ,żųŹ Ŵ,Ŵŷŷ ŷ,ŷżŶŸŷ Ŵ,ŶŴųŷż
ŻŴżŵ Ŵ,Ŵŷŷ ŷ,ŷżŶźŴ Ŵ,ŶųżŶŵ

ŴŹ/ŵŵ

Algorithmic Scalability: Iteration Count
ŷ Pre-Exascale Results

Ŵ ŵ ŷ Ż ŴŹ Ŷŵ Źŷ ŴŵŻ ŵŸ
Ź ŸŴŵ Ŵų

ŵŷ
ŵų
ŷŻ
ŷų
żŹ ŻŴż

ŵ
101

102

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

Ŵź/ŵŵ

Implementation Scalability: Solve Time (s)
ŷ Pre-Exascale Results

Ŵ ŵ ŷ Ż ŴŹ Ŷŵ Źŷ ŴŵŻ ŵŸ
Ź ŸŴŵ Ŵų

ŵŷ
ŵų
ŷŻ
ŷų
żŹ ŻŴż

ŵ

100

101

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

ŴŻ/ŵŵ

Implementation Scalability: Time× Iteration (s)
ŷ Pre-Exascale Results

Ŵ ŵ ŷ Ż ŴŹ Ŷŵ Źŷ ŴŵŻ ŵŸ
Ź ŸŴŵ Ŵų

ŵŷ
ŵų
ŷŻ
ŷų
żŹ ŻŴż

ŵ

10−1

100

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

Ŵż/ŵŵ

Best Solve Time vs Global System Size
ŷ Pre-Exascale Results

107 108 109 1010 1011
10−1

100

101

102

VBMVCYCLE-HLG
VCYCLE-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VCYCLE-MPI

Largest System Size is: 67121414144 ≈ 7× 1010.

ŵų/ŵŵ

Plans for the Future
ŷ Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have ŷ tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from ŴŻs (Ŵ GPU) to
ŵżŶs (ŻŴżŵ GPUs): too much!

— There is an undergoing effort for moving it to the GPUsŴ and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

ŴBernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts Ź (ŵųŵų): ŴųųųŷŴ.

ŵŴ/ŵŵ

Plans for the Future
ŷ Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have ŷ tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from ŴŻs (Ŵ GPU) to
ŵżŶs (ŻŴżŵ GPUs): too much!

— There is an undergoing effort for moving it to the GPUsŴ and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

ŴBernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts Ź (ŵųŵų): ŴųųųŷŴ.

ŵŴ/ŵŵ

Plans for the Future
ŷ Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have ŷ tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from ŴŻs (Ŵ GPU) to
ŵżŶs (ŻŴżŵ GPUs): too much!

— There is an undergoing effort for moving it to the GPUsŴ and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

ŴBernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts Ź (ŵųŵų): ŴųųųŷŴ.

ŵŴ/ŵŵ

Plans for the Future
ŷ Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have ŷ tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from ŴŻs (Ŵ GPU) to
ŵżŶs (ŻŴżŵ GPUs): too much!

— There is an undergoing effort for moving it to the GPUsŴ and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

ŴBernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts Ź (ŵųŵų): ŴųųųŷŴ.

ŵŴ/ŵŵ

Plans for the Future
ŷ Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have ŷ tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from ŴŻs (Ŵ GPU) to
ŵżŶs (ŻŴżŵ GPUs): too much!

— There is an undergoing effort for moving it to the GPUsŴ and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

ŴBernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts Ź (ŵųŵų): ŴųųųŷŴ.

ŵŴ/ŵŵ

PSCTOOLKIT:
Parallel Sparse Computation Toolkit

Thank you for listening!
Any questions?

ŵŵ/ŵŵ

	With a Little Help from My Friends
	The Model Problem
	The Parallel Sparse Computation Toolkit
	AMG Algorithms
	Parallel Matching Algorithms

	Pre-Exascale Results
	The Machines
	Test Problem
	Weal Scaling Results
	Plans for the Future

