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What we want to solve
ŵ The Model Problem

Solve : Ax = b,

where
• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of
computational science and engineering problems,

the exascale challenge, using computer that perform 1015 Flops, targeting next-gen
systems performing 1018 Flops to solve problems with tens of billions of unknowns.
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Parallel Sparse Computation Toolkit – psctoolkit.github.io
Ŷ The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMGŷPSBLAS:

• Existing software standards:
— MPI, OpenMP, CUDA
— Serial sparse BLAS,

— (Par)Metis,
— AMD

• Attention to performance using modern Fortran;

• Research on new preconditioners;

• No need to delve in the data structures for the user;

• Tools for error and mesh handling beyond simple algebraic operations;

• Standard Krylov solvers
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Parallel Sparse Computation Toolkit – psctoolkit.github.io
Ŷ The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMGŷPSBLAS:

• Domain decomposition preconditioners

• Algebraic multigrid with aggregation schemes

— Parallel coupled weightedmatching based aggregationŴ,ŵ
— Parallel decoupled smoothed aggregation (Vaněk, Brezina,Mandel)

• Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS, ℓ1
variants) that can be coupled with specialized block (approximate) solvers
MUMPS, SuperLU, incomplete factorizations (AINV, INVK/L, ILU-type)

• V-Cycle, W-Cycle, K-Cycle
Ŵ P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for bootstrap AMG based on graph
weighted matching, ACM Trans. Math. Software ŷŷ (ŵųŴŻ), no. ŷ, Art. Ŷż, ŵŸ pp.

ŵ P. D’Ambra, F. D. and S. Filippone, AMG preconditioners for linear solvers towards extreme scale, SIAM J. Sci. Comput. ŷŶ
(ŵųŵŴ), no. Ÿ, SŹźż–SźųŶ.
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Parallel Sparse Computation Toolkit – psctoolkit.github.io
Ŷ The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMGŷPSBLAS.

Freely available from: https://psctoolkit.github.io,

Open Source with BSD Ŷ Clause License.

P. D’Ambra, F. D., and S. Filippone, Parallel Sparse Computation Toolkit,
Software Impacts (ŵųŵŶ): ŴųųŷŹŶ.

git clone git@github.com:psctoolkit/psctoolkit.git
(cd psblas3; ./configure; make -j; make install)
(cd psblas3-ext; ./configure; make -j; make install)
(cd amg4psblas; ./configure; make -j; make install)
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Algebraic Multigrid Preconditioners
Ŷ The Parallel Sparse Computation Toolkit

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to precondition the CG
method:
• Hierarchy of systems

Alx=bl, l = 0, . . . , nlev

• Transfer operators:
Pl
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother: “High frequencies”

Ml : Rnl → Rnl

Prolongator: “Low frequencies”

Pll+1 : Rnl → Rnl+1

Complementarity of Smoother and Prolongator
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What are we looking for?
Ŷ The Parallel Sparse Computation Toolkit

Solve the preconditioned system:
B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi(B−1A) ≈ 1 being independent of n,

Linear complexity the action of B−1 costs as little as possible, the best beingO(n) flops,

Implementation scalability in a massively parallel computer, B−1 should be composed of local
actions, performance should depend linearly on the number of computing units
employed (MPI Tasks, OpenMP Threads, GPUs).
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What is our recipe?
Ŷ The Parallel Sparse Computation Toolkit

• The smootherM is a standard iterative solver with good parallel properties, e.g.,
ℓ1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

• The coarse solver can be (again) a preconditioned CG method.
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What is our recipe?
Ŷ The Parallel Sparse Computation Toolkit

• The smootherM is an iterative solver with good parallel properties:
GS A = M− N, withM = L+ D and N = −LT, where D = diag(A) and L = tril(A) is

intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process

the method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LTpp for Dpp = diag(App) and Lpp = tril(App) then:

Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

(Mℓ1−HGS)p =Lpp + Dpp + Dℓ1p,

(dℓ1 )
nb
i=1 =

∑
j∈Ωnb

p

|aij|.
Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

AINV Block-Jacobi with an approximate inverse factorization on the block⇒ suitable for GPUs
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What is our recipe?
Ŷ The Parallel Sparse Computation Toolkit

• The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

Givenw ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a complementary
prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf

w ∈ Range(P): coarse space Range(Pf): complementary space

[P, Pf]
TA[P, Pf] =

(
PTAP PTAPf
PTf AP PTf APf

)
=

(
Ac Acf
Afc Af

)
Ac: coarse matrix Af: hierarchical complement

Sufficient condition for efficient coarsening
Af = PTf APf as well conditioned as possible, i.e.,

Convergence rate of compatible relaxation: ρf = ∥I−M−1
f Af∥Af ≪ 1ż/ŵŵ



Parallel Matching Algorithms
Ŷ The Parallel Sparse Computation Toolkit

Ŵ. What is the best matching algorithm from a
computational point of view?

ŵ. Can we do an approximate global matching over
the whole graph for better aggregation quality?

Ŵ Algorithm: Locally Dominant Edge

Input: Graph G = (V, E), Weights Â
ŵ M← ∅;
Ŷ while E ̸= ∅ do
ŷ Take a locally dominant edge (i, j) ∈ E , i.e., such

that

argmax
k

âik = argmax
k

âjk = âij

Add (i, j) ∈M;
Ÿ Remove all edges incident to i and j from E ;
Ź end

Output: MatchingM

Ü. V. Çatalyürek, F. Dobrian, A. Gebremedhin, M. Halappanavar and A. Pothen, Distributed-Memory Parallel
Algorithms for Matching and Coloring, ŵųŴŴ IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, Anchorage, AK, USA, ŵųŴŴ, pp. ŴżźŴ-ŴżŻų, doi: Ŵų.ŴŴųż/IPDPS.ŵųŴŴ.ŶŹų.
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The supercomputer of the TOPŸųų: www.topŸųų.org
ŷ Pre-Exascale Results

SystemŴ Cores Power (kW)

Ŵ Frontier - HPE Cray EXŵŶŸa, AMD Optimized Ŷrd Generation EPYC
ŹŷC ŵGHz, AMD Instinct MIŵŸųX, Slingshot-ŴŴ, HPE DOE/SC/Oak Ridge
National Laboratory United States

Ż,Źżż,żųŷ ŵŵ,źųŶ

ŵ Supercomputer Fugaku - Supercomputer Fugaku, AŹŷFX ŷŻC
ŵ.ŵGHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational
Science Japan

ź,ŹŶų,ŻŷŻ ŵż,Żżż

Ŷ LUMI - HPE Cray EXŵŶŸa, AMD Optimized Ŷrd Generation EPYC ŹŷC
ŵGHz, AMD Instinct MIŵŸųX, Slingshot-ŴŴ, HPE EuroHPC/CSC Finland

ŵ,ŵŵų,ŵŻŻ Ź,ųŴŹ

ŷ Leonardo - BullSequana XHŵųųų, Xeon Platinum ŻŶŸŻ ŶŵC ŵ.ŹGHz,
NVIDIA AŴųų SXMŷ Źŷ GB, Quad-rail NVIDIA HDRŴųų Infiniband, Atos
EuroHPC/CINECA Italy

Ŵ,Żŵŷ,źŹŻ ź,ŷųŷ

Ÿ Summit - IBM Power System ACżŵŵ, IBM POWERż ŵŵC Ŷ.ųźGHz,
NVIDIA Volta GVŴųų, Dual-rail Mellanox EDR Infiniband, IBM
DOE/SC/Oak Ridge National Laboratory United States

ŵ,ŷŴŷ,Ÿżŵ Ŵų,ųżŹ

Leonardo

NVIDIA AŴųų
Ŵ TopŸųų: June ŵųŵŶ List.
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ŶD Poisson Problem
ŷ Pre-Exascale Results

Finite Differences discretization of

{
−∇2u = 1, x ∈ [0, 1]3

u(x) = 0, x ∈ ∂[0, 1]3. 6ui,j,k

−ui,j,k−1

−ui,j,k+1

−ui+1,j,kui−1,j,k

−ui,j+1,k

−ui,j−1,k

Data distribution:
— For PSCToolkit we use a block ŶD Distribution,
— For AMGX we use the amgx_mpi_poisson7 tester.

Solver is Flexible Conjugate Gradient and CG for PSCToolkit and AMGX respectively,
tolerance 10−6.
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Weak Scaling
ŷ Pre-Exascale Results

In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.
We use 8× 106 unknowns per GPU, i.e., 3.2× 107 unknowns per node.

We use the following resources:
Number of GPUs from Ŵ to ŻŴżŵ,
GPUs x Node ŷ (Ŵ MPI Task x GPU, Ż CPUs per Task)
Pure MPI: Ŷŵ MPI Tasks per Node

Within the software framework:
Compilers: gcc/11.3.0
MPI: openmpi/4.1.4
CUDA compilation tools, release 11.8, V11.8.89
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Algorithms
ŷ Pre-Exascale Results

Aggregation: VBM, Cycle: V, Smoother: ℓ1-Jacobi, Coarse
Solver: PCG + ℓ1-Jacobi,
Aggregation: Smoothed Matching, Cycle: V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,
Aggregation: Matching, Cycle: Variable V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,

Coarsening: Classical Algebraic Multigrid, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, ŷų sweeps
Aggregation: (Iterative) Parallel Graph Matching, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, ŷų sweeps
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Operator Complexity
ŷ Pre-Exascale Results

A first measure of the theoretical computational cost and of thememory footprint
of the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)
nnz(A)

=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

Ŵ Ŵ,ŸźŸ Ŵ,Żżŷ Ŵ,Ŵŷŵ ŷ,ŷŸŷŸŹ Ŵ,ŵźżźż
ŵ Ŵ,ŸźŻ Ŵ,żųŸ Ŵ,Ŵŷŵ ŷ,ŷŶŸźŹ Ŵ,ŶŴŴŻź
ŷ Ŵ,ŸŻ Ŵ,żŴŸ Ŵ,ŴŷŶ ŷ,ŸŴŶźź Ŵ,ŶŶŴŴź
Ż Ŵ,ŸŻŶ Ŵ,żŴź Ŵ,Ŵŷŵ ŷ,ŸŵŶźŹ Ŵ,ŶŶŴŹŵ
ŴŹ Ŵ,ŸŻŷ Ŵ,żŵŸ Ŵ,ŴŷŶ ŷ,ŸŴŵŶż Ŵ,ŶŵŴŶŶ
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Źŷ Ŵ,ŸŻź Ŵ,żŶ Ŵ,ŴŷŶ ŷ,ŸųŴŶŸ Ŵ,ŶŴżŴŷ
ŴŵŻ Ŵ,ŸŻŻ Ŵ,żŶŹ Ŵ,ŴŷŶ ŷ,ŷżżŵŸ Ŵ,ŶŴŷŵŴ
ŵŸŹ Ŵ,ŸŻź Ŵ,żųŸ Ŵ,Ŵŷŷ ŷ,ŷżŵŸŵ Ŵ,ŶŴŶŴŷ
ŸŴŵ Ŵ,ŸŻż Ŵ,żŶź Ŵ,ŴŷŶ ŷ,ŷżŸŵ Ŵ,ŶŴŶŵż
Ŵųŵŷ Ŵ,ŸŻŻ Ŵ,żŷŵ Ŵ,Ŵŷŷ ŷ,ŷżŸųŶ Ŵ,ŶŴųżŴ
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Algorithmic Scalability: Iteration Count
ŷ Pre-Exascale Results

Ŵ ŵ ŷ Ż ŴŹ Ŷŵ Źŷ ŴŵŻ ŵŸ
Ź ŸŴŵ Ŵų
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Implementation Scalability: Solve Time (s)
ŷ Pre-Exascale Results
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Implementation Scalability: Time× Iteration (s)
ŷ Pre-Exascale Results
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Best Solve Time vs Global System Size
ŷ Pre-Exascale Results

107 108 109 1010 1011
10−1

100

101

102

VBMVCYCLE-HLG
VCYCLE-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VCYCLE-MPI

Largest System Size is: 67121414144 ≈ 7× 1010.
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Plans for the Future
ŷ Pre-Exascale Results

Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|E|∆), ∆ = max
vi∈V

deg(vi).

— If we build the matching using MPI we have ŷ tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from ŴŻs (Ŵ GPU) to
ŵżŶs (ŻŴżŵ GPUs): too much!

— There is an undergoing effort for moving it to the GPUsŴ and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

Improved OpenMP support, for now we have addedmatrix assembly routines and
some BLAS.

ŴBernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts Ź (ŵųŵų): ŴųųųŷŴ.
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PSCTOOLKIT:
Parallel Sparse Computation Toolkit

Thank you for listening!
Any questions?
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