PSCTOOLKIT:

Parallel Sparse Computation Toolkit
Math 2 Product (M2P): Emerging Technologies in Computational
Science for Industry, Sustainability and Innovation

F. Durastante®

(™ Universita d Pisa

UConsiino Nazionale delle Ricerche)

1S08b - Mathematical software for Computational and Data Science at Extreme scales

May 31, 2023

1/22

\‘"'/‘

W

Dipartimento
di Matematica
Universita di Pisa

mailto:fabio.durastante@unipi.it

Pasqua D’Ambra,
Consiglio Nazionale delle Ricerche
Istituto per le Applicazioni del Calcolo
“M. Picone”

Leonardo Early Access Program (LEAP). Computing
time on the Leonardo HPC System for the project
“PSCToolkit for Sparse Matrix Computations at
Extreme Scales.”

2/22

Collaborators & Funding

1 With a Little Help from My Friends

Salvatore Filippone,
Universita degli Studi di Roma “Tor Vergata”
Dipartimento di Ingegneria Civile e
Ingegneria Informatica
IAC-CNR

This work has been supported by the Spoke 1
“FutureHPC & BigData” of the Italian Research Center
on High-Performance Computing, Big Data and
Quantum Computing (ICSC) funded by MUR Missione

“. rnssa 4 Componente 2 Investimento 1.4: Potenziamento
strutture di ricerca e creazione di “campioni nazionali
di R&S (M4C2-19)", and the Spoke 6 “Multiscale
modelling & Engineering applications” - Next
Generation EU (NGEU).

Ny,
A L

V/A\V Table of Contents

2 The Model Problem

» The Model Problem

3/22

..

%‘@ What we want to solve

2 The Model Problem

Solve : Ax = b,

where
e A € R™"isavery large and sparse matrix nnz(A) = O(n),
e x,b e R",

@ is often the most time consuming computational kernel in many areas of
computational science and engineering problems,

4/22

V%,
A

VJA\V What we want to solve

2 The Model Problem

Solve : Ax = b,

where
e A € R™"isavery large and sparse matrix nnz(A) = O(n),
e x.b € R".
@ is often the most time consuming computational kernel in many areas of
computational science and engineering problems,

P the exascale challenge, using computer that perform 10'° Flops, targeting next-gen
systems performing 10'® Flops to solve problems with tens of billions of unknowns.

4/22

N\
A L

V/A\V Table of Contents

3 The Parallel Sparse Computation Toolkit

» The Parallel Sparse Computation Toolkit
AMG Algorithms
Parallel Matching Algorithms

5/22

3 The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG4PSBLAS:

e Existing software standards:

— MPI, OpenMP, CUDA — (Par)Metis,
— Serial sparse BLAS, — AMD

e Attention to performance using modern Fortran;

e Research on new preconditioners;

e No need to delve in the data structures for the user;

e Tools for error and mesh handling beyond simple algebraic operations;

e Standard Krylov solvers

6/22

Parallel Sparse Computation Toolkit - psctoolkit.github.io

4 BLAS

psctoolkit.github.io

Parallel Sparse Computation Toolkit - psctoolkit.github.io
3 The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG4PSBLAS:

e Domain decomposition preconditioners P S
o Algebraic multigrid with aggregation schemes B
— Parallel coupled weighted matching based aggregation™?
— Parallel decoupled smoothed aggregation (Vanék, Brezina, Mandel) @

e Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS, /4 Qe
variants) that can be coupled with specialized block (approximate) solvers @
MUMPS, SuperLU, incomplete factorizations (AINV, INVK/L, ILU-type)

e V-Cycle, W-Cycle, K-Cycle

1 P.D'Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for bootstrap AMG based on graph AMG S
weighted matching, ACM Trans. Math. Software 44 (2018), no. 4, Art. 39, 25 pp. _ P

2 P.D'’Ambra, F. D. and S. Filippone, AMG preconditioners for linear solvers towards extreme scale, SIAM J. Sci. Comput. 43 4 BLAS

(2021), no. 5, S679-5703.
6/22

psctoolkit.github.io

Parallel Sparse Computation Toolkit - psctoolkit.github.io
3 The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG4PSBLAS. S

©) Freely available from: https://psctoolkit.github.io,
A Open Source with BSD 3 Clause License.

B P.D'Ambra, E. D, and S. Filippone, Parallel Sparse Computation Toolkit, GPU
Software Impacts (2023): 100463. =

git clone git@github.com:psctoolkit/psctoolkit.git
(cd psblas3; ./configure; make -j; make install)
(cd psblas3-ext; ./configure; make -j; make install)
(cd amgédpsblas; ./configure; make -j; make install)

6/22

psctoolkit.github.io
https://psctoolkit.github.io

..

%‘@ Algebraic Multigrid Preconditioners

3 The Parallel Sparse Computation Toolkit

Given Matrix A € R"™" SPD

Wanted Iterative method B to precondition the CG
method:
e Hierarchy of systems
A(X:bl,l = U7 coey Ney

e Transfer operators:
Pl : R™1 5 R™

Missing Structural/geometric infos

Smoother: “High frequencies” Prolongator: “Low frequencies”

M; : R" — R™ P, :RY — R+

Complementarity of Smoother and Prolongator

7/22

\\w,‘
//A\\ What are we looking for?

3 The Parallel Sparse Computation Toolkit

Solve the preconditioned system:
B~ 'Ax = B~ !b,
with matrix B~! &~ A~! (left preconditioner) such that:
Algorithmic scalability max; \;(B~'A) ~ 1 being independent of n,
Linear complexity the action of B~! costs as little as possible, the best being O(n) flops,

Implementation scalability in a massively parallel computer, B~! should be composed of local
actions, performance should depend linearly on the number of computing units
employed (MPI Tasks, OpenMP Threads, GPUs).

8/22

..

%‘@ What is our recipe?

3 The Parallel Sparse Computation Toolkit

e The smoother M is a standard iterative solver with good parallel properties, e.g.,
¢1-Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

e The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

e The coarse solver can be (again) a preconditioned CG method.

9/22

V%,
A

VJA\V What is our recipe?

3 The Parallel Sparse Computation Toolkit

e The smoother M is an iterative solver with good parallel properties:
GS A=M— N,withM =L+ Dand N = —LT, where D = diag(A) and L = tril(4) is
intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.
£1-HGS Onprocess p = 1, ..., np relative to the index set (2, we factorize
App = Lyp + Dpp + L1, for Dy, = diag(4,,) and Ly, = tril(A,,) then:

My, —ges = diag((Me, —Hes)p)p=1,...np,
(Me, —nes)p =Lpp + Dpp + Dy ps

(o)) = lagl-

i b
jeon

My, _nes = diag((My, —mes)p)p=1,...np>

AINV Block-Jacobi with an approximate inverse factorization on the block = suitable for GPUs

9/22

h\\"[,é
/N What is our recipe?
3 The Parallel Sparse Computation Toolkit
e The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.
Givenw € R", let P € R™" and P; € R™ "/ be a prolongator and a
, such that:

R" = Range(P) © Range(P;), n=n,+

w € Range(P): coarse space Range(Py):
PTAP PTAP A. A
T _ £\ _ c of

A.: coarse matrix

Sufficient condition for efficient coarsening

Ap = PfTAPf as well conditioned as possible, i.e.,
9/22 Convergence rate of compatible relaxation: py = ||I — M, 1AfH a4 <1

Parallel Matching Algorithms

3 The Parallel Sparse Computation Toolkit

1. What is the best matching algorithm from a 1 Algorithm: Locally Dominant Edge
computational point of view? Input: Graph G = (V, £), Weights A
2 M+ @?

2. Can we do an approximate global m.atchlng'ov;er » while £ £ (do
the whole graph for better aggregation quality? Take a locally dominant edge (i,j) € &, i.e., such
o - xrx that

arg max d; = arg max dj, = @j
k k

Add (i,j) € M;
Remove all edges incident to i and j from &;

«

s end
Output: Matching M

H U. V. Catalyiirek, F. Dobrian, A. Gebremedhin, M. Halappanavar and A. Pothen, Distributed-Memory Parallel
Algorithms for Matching and Coloring, 2011 IEEE International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum, Anchorage, AK, USA, 2011, pp. 1971-1980, doi: 10.1109/IPDPS.2011.360.

10/22

Ny,
A L

V/A\V Table of Contents

4 Pre-Exascale Results

» Pre-Exascale Results
The Machines
Test Problem
Weal Scaling Results
Plans for the Future

11/22

The supercomputer of the TOP500: www.top500.0rg

4 Pre-Exascale Results

System’ Cores Power (kW)

1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 8,699,904 22,703
64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge 1 Qe
National Laboratory United States

2 Supercomputer Fugaku - supercomputer Fugaku, A64FX 48C 7,630,848 29,899
2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational
Science Japan Leona rdo

3 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2,220,288 6,016
2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland

4 Leonardo - Bullsequana XH2000, Xeon Platinum 8358 32C 2.6GHz, 1,824,768 7,404
NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos
EuroHPC/CINECA lItaly

5 Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, 2,414,592 10,096
NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband, IBM
DOE/SC/Oak Ridge National Laboratory United States

NVIDIA A100

"@se0 Top500: June 2023 List.

12/22

https://www.top500.org/lists/top500/list/2023/06/

3D Poisson Problem

4 Pre-Exascale Results

Finite Differences discretization of

U1,k

—Viu=1, xe[0,1?
u(x) =0, x€d[0,1]3.

2"Y Data distribution:
— For PSCToolkit we use a block 3D Distribution,
— For AMGX we use the amgx_mpi_poisson7 tester.

¢’ Solver is Flexible Conjugate Gradient and CG for PSCToolkit and AMGX respectively,
tolerance 1076.

13/22

qsua“
//A\\ Weak Scaling
4 Pre-Exascale Results
E.. In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.
&8 We use 8 x 10% unknowns per GPU, i.e., 3.2 x 107 unknowns per node.
We use the following resources:
Number of GPUs from 1to 8192,
GPUs x Node 4 (1 MPI Task x GPU, 8 CPUs per Task)
Pure MPI: 32 MPI Tasks per Node
Within the software framework:
<[> Compilers: gcc/11.3.0
<[> MPI: openmpi/4.1.4
<[> CUDA compilation tools, release 11.8, V11.8.89

14/22

..

%A\% Algorithms

4 Pre-Exascale Results

<[> Aggregation: VBM, Cycle: V, Smoother: ¢;-Jacobi, Coarse
Solver: PCG + ¢;-Jacobi,

<[> Aggregation: Smoothed Matching, Cycle: V, Smoother:
{1-Jacobi, Coarse Solver: PCG + ¢;-Jacobi,

<[> Aggregation: Matching, Cycle: Variable V, Smoother:
{1-Jacobi, Coarse Solver: PCG + ¢1-Jacobi,

<[> Coarsening: Classical Algebraic Multigrid, Cycle: V,
Smoother: /;-Jacobi, Coarse Solver: /1-Jacobi, 40 sweeps

<[> Aggregation: (Iterative) Parallel Graph Matching, Cycle: V,
Smoother: /;-Jacobi, Coarse Solver: /1-Jacobi, 40 sweeps

15/22

o0

4

NVIDIA/AMGX

Distributed multigrid linear solver library on GPU

<

NVIDIA.

AV 'b‘

//A\V Operator Complexity

4 Pre-Exascale Results

P A first measure of the theoretical computational cost and of the memory footprint
of the different algorithms is given by the operator complexity:

o “the total number of nonzeroes in
2 2= nz(4;) nnz(4) __the linear operators on all grids di-

opc = = .
P nnz(A) vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching
1 1,575 1,894 1,142 4,45456 1,27979
2 1,578 1,905 1,142 4,43576 1,31187
4 1,58 1,915 1,143 4,51377 1,33117
8 1,583 1,917 1,142 4,52376 1,33162
16 1,584 1,925 1,143 4,51239 1,32133

16/22

AV 'b‘

//A\V Operator Complexity

4 Pre-Exascale Results

P A first measure of the theoretical computational cost and of the memory footprint
of the different algorithms is given by the operator complexity:

o “the total number of nonzeroes in
1o Dnz(4) __the linear operators on all grids di-

ope = nnz(A) " vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching
32 1,584 1,93 1,143 4,49595 1,31887
64 1,587 1,93 1,143 4,50135 1,31914
128 1,588 1,936 1,143 4,49925 1,31421
256 1,587 1,905 1,144 4,49252 1,31314
512 1,589 1,937 1,143 4,4952 1,31329
1024 1,588 1,942 1,144 4,49503 1,31091

16/22

AV 'b‘

//A\V Operator Complexity

4 Pre-Exascale Results

P A first measure of the theoretical computational cost and of the memory footprint
of the different algorithms is given by the operator complexity:

0 “the total number of nonzeroes in
> 1=onnz(A]) the linear operators on all grids di-

opc = = .
P nnZ(A) vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching
2048 1,59 1,939 1,143 4,4921 1,31041
4096 1,588 1,906 1,144 4,49354 1,31049
8192 1,144 4,49371 1,30932

16/22

N

uw

17/22

Algorithmic Scalability: Iteration Count

4 Pre-Exascale Results

Number of GPUs

= @= VBMVCYCLE-HLG
= ®s VCYCLE-HLG
VUNSM-VCYC-HLG
mgmm AMGX-AGGREGATION
mpmm AMGX-CLASSICAL
wiil= /BMVCYCLE-MPI
mmgmm \/CYCLE-MPI
=P VUNSM-VCYC-MPI

Implementation Scalability: Solve Time (s)

4 Pre-Exascale Results

= @= VBMVCYCLE-HLG
= ®= VCYCLE-HLG
VUNSM-VCYC-HLG
mgem AMGX-AGGREGATION
wgem AMGX-CLASSICAL
wiil= VBMVCYCLE-MPI
mmgmm \/CYCLE-MPI
mPum VUNSM-VCYC-MPI

N
LRI SR I e

Number of GPUs

18/22

Implementation Scalability: Time x Iteration (s)

4 Pre-Exascale Results

= @= VBMVCYCLE-HLG
= »= VCYCLE-HLG
VUNSM-VCYC-HLG
mpem AMGX-AGGREGATION
g AMGX-CLASSICAL
wiiil= \/BMVCYCLE-MPI
mmgem \/CYCLE-MPI
mPpm VUNSM-VCYC-MPI

N

Number of GPUs

19/22

Best Solve Time vs Global System Size

4 Pre-Exascale Results

= @= VBMVCYCLE-HLG

= o= VCYCLE-HLG

memm AMGX-AGGREGATION
ey AMGX-CLASSICAL
mgum \/CYCLE-MPI

107 10% 10° 1010 10t
Largest System Size is: 67121414144 ~ 7 x 1019,

20/22

<] Plans for the Future

4 Pre-Exascale Results

® Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|[E|A), A= max deg(vi).
s

21/22

<] Plans for the Future

4 Pre-Exascale Results

® Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:
Asymptotic cost for G = (V,E) is O(|[E|A), A= max deg(vi).
s

— If we build the matching using MPI we have 4 tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from 18s (1 GPU) to
293s (8192 GPUs): too much!

21/22

<] Plans for the Future

4 Pre-Exascale Results

® Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|[E|A), A= max deg(vi).
vi
— If we build the matching using MPI we have 4 tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from 18s (1 GPU) to
293s (8192 GPUs): too much!
— There is an undergoing effort for moving it to the GPUs' and we are planning to include
it in PSCToolkit,

'Bernaschi, M., P. D’Ambra, and D. Pasquini. “BootCMatchG: An adaptive algebraic multigrid linear solver
for GPUs.” Software Impacts 6 (2020): 100041.

21/22

<] Plans for the Future

4 Pre-Exascale Results

® Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|[E|A), A= max deg(vi).
vi

— If we build the matching using MPI we have 4 tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from 18s (1 GPU) to
293s (8192 GPUs): too much!

— There is an undergoing effort for moving it to the GPUs' and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

21/22

<] Plans for the Future

4 Pre-Exascale Results

® Many graph algorithms are inherently serial in nature, and therefore require
nontrivial algorithmic techniques for creating concurrency:

Asymptotic cost for G = (V,E) is O(|[E|A), A= max deg(vi).
vi

— If we build the matching using MPI we have 4 tasks per node and no OpenMP
acceleration, weak scaling building times for the hierarchy goes from 18s (1 GPU) to
293s (8192 GPUs): too much!

— There is an undergoing effort for moving it to the GPUs' and we are planning to include
it in PSCToolkit,

— We are also investigating alternative algorithmic approaches and the possibility of a
multithreaded version.

s Improved OpenMP support, for now we have added matrix assembly routines and
some BLAS.

21/22

N

U

PSCTOOLKIT: . .
Parallel Sparse Computation Toolkit

Thank you for listening!
Any questions?

22/22

	With a Little Help from My Friends
	The Model Problem
	The Parallel Sparse Computation Toolkit
	AMG Algorithms
	Parallel Matching Algorithms

	Pre-Exascale Results
	The Machines
	Test Problem
	Weal Scaling Results
	Plans for the Future

