Scalability Results for the Solution of the Richards Equation

F. Durastante

GIMC SIMAI Young 2022
Thursday, September 29 ${ }^{\text {th }}$
MS 01 - Efficient linear solvers for coupled geophysical simulations.

Università di Pisa, fabio.durastante@unipi.it
Istituto per le Applicazioni del Calcolo "M. Picone" - CNR

Collaborators and Funding

Daniele Bertaccini
Università degli Studi di Roma
"Tor Vergata"
Dipartimento di Matematica IAC-CNR

Pasqua D'Ambra,
Consiglio Nazionale delle Ricerche
Istituto per le Applicazioni del Calcolo "M. Picone"

Salvatore Filippone,
Università degli Studi di Roma
"Tor Vergata"
Dipartimento di Ingegneria Civile
e Ingegneria Informatica IAC-CNR

European Commission

Horizon 2020
European Union funding
for Research \& Innovation

The Richards Equation: a fluid flow model

Richards equation models fluid flow in the unsaturated (vadose) zone, it is
non-linear the parameters that control the flow are dependent on the saturation of the media,
a combination of Darcy's law and the principle of mass conservation

$$
\frac{\partial(\rho \phi s(p))}{\partial t}+\nabla \cdot q=0
$$

($s(p)$ is the saturation at pressure head p of a fluid with density ρ and terrain porosity ϕ,
q is the volumetric water flux, using Darcy's law it is written as

$$
q=-K(p)(\nabla p+c \hat{z}),
$$

. $K(p)$ the hydraulic conductivity,
c the cosine of the angle between the downward z-axis \hat{z} and the direction of the gravity force

The Richards Equation: constitutive equations

To close the model we need equations for both $s(p)$ and $K(p)$, we use the Van Genuchten formulation [Celia et al. 1990; Van Genuchten, 1980]

$$
s(p)=\frac{\alpha\left(s_{s}-s_{r}\right)}{\alpha+|p|^{\beta}}+s_{r}, \text { and } K(p)=K_{s} \frac{a}{a+|p|^{\gamma}},
$$

where
all the parameters $(\alpha, \beta, \gamma, a)$ are fitted on real data and assumed to be constant in the media;
K K_{s} is the saturated hydraulic conductivity.

The Richards Equation: constitutive equations

To close the model we need equations for both $s(p)$ and $K(p)$, we use the Van Genuchten formulation [Celia et al. 1990; Van Genuchten, 1980]

Cell-centered finite difference discretization

We use a discretization on a cell-centered finite difference tensor mesh on
a parallelepiped discretized with $\mathbf{N}=\left(N_{x}, N_{y}, N_{z}\right)$ nodes,
the cell centers $\left\{x_{i, j, k}=\left(i h_{x}, j h_{y}, k h_{z}\right)\right\}_{i, j, k=0}^{N-1}$, for

$$
\mathbf{h}=\left(h_{x}, h_{y}, h_{z}\right)=\left(L_{x}, L_{y}, L_{z}\right) /(\mathbf{N}-1) ;
$$

the relative interfaces located at midpoints between adjacent nodes;
1 N_{t} uniform time steps, i.e., the grid $\left\{t_{l}=\mid \Delta t\right\}_{l=0}^{N_{t}-1}$ for $\Delta t=1 /\left(N_{t}-1\right)$.
This gives the non-linear equations:

$$
\begin{aligned}
\boldsymbol{\Phi}\left(p_{i, j, k}^{(I)}\right)= & \frac{\rho \phi}{\Delta t}\left(s\left(p_{i, j, k}^{(I)}\right)-s\left(p_{i, j, k}^{(I-1)}\right)\right)+q_{i+1 / 2, j, k}^{(I)}-q_{i-1 / 2, j, k}^{(I)}+q_{i, j+1 / 2, k}^{(I)}-q_{i, j-1 / 2, k}^{(I)} \\
& +q_{i, j, k+1 / 2}^{(I)}-q_{i, j, k-1 / 2}^{(I)}+f_{i, j, k} \equiv 0, \quad \text { for } i, j, k=1, \ldots, \mathbf{N}-2
\end{aligned}
$$

Cell-centered finite difference discretization

$$
\begin{aligned}
\boldsymbol{\Phi}\left(p_{i, j, k}^{(I)}\right)= & \frac{\rho \phi}{\Delta t}\left(s\left(p_{i, j, k}^{(I)}\right)-s\left(p_{i, j, k}^{(I-1)}\right)\right)+q_{i+1 / 2, j, k}^{(I)}-q_{i-1 / 2, j, k}^{(I)}+q_{i, j+1 / 2, k}^{(I)}-q_{i, j-1 / 2, k}^{(I)} \\
& +q_{i, j, k+1 / 2}^{(I)}-q_{i, j, k-1 / 2}^{(I)}+f_{i, j, k} \equiv 0, \quad \text { for } i, j, k=1, \ldots, \mathbf{N}-2
\end{aligned}
$$

with

$$
\begin{aligned}
q_{i+1 / 2, j, k}^{(I)}= & -{ }^{\mathrm{AV}} K_{i+1, i}^{(I)}\left(\frac{p_{i+1, j, k}^{(I)}-p_{i, j, k}^{(I)}}{h_{x}^{2}}\right), q_{i-1 / 2, j, k}^{(I)}=-{ }^{\mathrm{AV}} K_{i-1, i}^{(I)}\left(\frac{p_{i, j, k}^{(I)}-p_{i-1, j, k}^{(I)}}{h_{x}^{2}}\right), \\
q_{i, j+1 / 2, k}^{(I)}= & -{ }^{\mathrm{AV}} K_{j+1, j}^{(I)}\left(\frac{p_{i, j+1, k}^{(I)}-p_{i, j, k}^{(I)}}{h_{y}^{2}}\right), q_{i, j-1 / 2, k}^{(I)}=-{ }^{\mathrm{AV}} K_{j-1, j}^{(I)}\left(\frac{p_{i, j, k}^{(I)}-p_{i, j-1, k}^{(I)}}{h_{y}^{2}}\right), \\
q_{i, j, k+1 / 2}^{(I)}= & \quad-{ }^{\mathrm{AV}} K_{k+1, k}^{(I)}\left(\frac{p_{i, k+1}^{(I)}-p_{i, j, k}^{(I)}}{h_{z}^{2}}\right)-\frac{K\left(p_{i, j, k+1)}\right.}{2 h_{z}}, \\
q_{i, j, k-1 / 2}^{(I)}= & \quad-{ }^{\mathrm{AV}} K_{k-1, k}^{(I)}\left(\frac{p_{i, j, k}^{(I)}-p_{i, j, k-1}^{(I)}}{h_{2}^{2}}\right)-\frac{K\left(p_{i, j, k-1)}^{2}\right.}{2 h_{z}},
\end{aligned}
$$

Values at the interfaces

The selection of the form of the average term that can lead to the more realistic simulations does depend on the problem and is still an open problem.

Denote by K_{U} and K_{L} the values of K on the opposite sides of the interface arithmetic mean ${ }^{\text {ARIT }} K=\left(K_{U}+K_{L}\right) / 2$, geometric mean ${ }^{\text {GEOM }} K^{(I)}=\sqrt{K_{U} K_{L}}$, upstream-weighted mean
integral mean

$$
K^{\text {UP }} K^{(I)}= \begin{cases}K_{U}, & p_{U}-p_{L} \geq 0 \\ K_{L}, & p_{U}-p_{L}<0\end{cases}
$$

$$
{ }^{\text {INT }} K^{(I)}= \begin{cases}\frac{1}{p_{L}-p_{U}} \int_{p_{L}}^{p_{U}} K(\psi) d \psi, & p_{L} \neq p_{U} \\ K_{U}, & \text { otherwise }\end{cases}
$$

A combination of the above in the different directions

1. Estimate, fix all the parameters involved in the model, and select the opportune interface values for the discretization,
2. Estimate, fix all the parameters involved in the model, and select the opportune interface values for the discretization,
3. Select a time stepping method: Backward Euler with uniform steps,
4. Estimate, fix all the parameters involved in the model, and select the opportune interface values for the discretization,
5. Select a time stepping method: Backward Euler with uniform steps,
6. Iterative solution of the nonlinear equation with an inexact-Newton method

The solution procedure

1. Estimate, fix all the parameters involved in the model, and select the opportune interface values for the discretization,
2. Select a time stepping method: Backward Euler with uniform steps,
3. Iterative solution of the nonlinear equation with an inexact-Newton method
4. Iterative solution of the linear systems with the Jacobian matrix:

The Jacobian matrix $J=J_{\Phi}$ can then be computed in closed form,
\# At the core of the (distributed) parallel solution resides the solution of the (right) preconditioned linear system

$$
J M^{-1}\left(M \mathbf{d}_{k}\right)=-\boldsymbol{\Phi}\left(\mathbf{p}^{(k, l)}\right),
$$

M1 The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive definite linear systems. Nevertheless, we are dealing with a non symmetric problem.
(3) What can we do?
(Describe the asymptotic spectral properties of the sequence $\left\{J_{\mathbf{N}}\right\}_{\mathbf{N}}$,

N1 The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive definite linear systems. Nevertheless, we are dealing with a non symmetric problem.
(3) What can we do?
\mathcal{V}^{0} Describe the asymptotic spectral properties of the sequence $\left\{J_{\mathbf{N}}\right\}_{\mathbf{N}}$,
$\mathcal{\sim}$ Find an asymptotically spectrally equivalent symmetric positive definite matrix sequence $\left\{M_{N}\right\}_{N}$ to $\left\{J_{N}\right\}_{N}$,

Q1 The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive definite linear systems. Nevertheless, we are dealing with a non symmetric problem.
(3) What can we do?
\mathcal{V}^{0} Describe the asymptotic spectral properties of the sequence $\left\{J_{N}\right\}_{\mathbf{N}}$,
$\mathcal{\sim}$ Find an asymptotically spectrally equivalent symmetric positive definite matrix sequence $\left\{M_{N}\right\}_{N}$ to $\left\{J_{N}\right\}_{N}$,
© Approximate $\left\{M_{\mathbf{N}}\right\}_{\mathbf{N}}$ by a (parallel) AMG method to efficiently solve the systems.

Q1 The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive definite linear systems. Nevertheless, we are dealing with a non symmetric problem.
(3) What can we do?
(Describe the asymptotic spectral properties of the sequence $\left\{J_{\mathbf{N}}\right\}_{\mathbf{N}}$,
\& Find an asymptotically spectrally equivalent symmetric positive definite matrix sequence $\left\{M_{N}\right\}_{N}$ to $\left\{J_{N}\right\}_{N}$,
\& Approximate $\left\{M_{\mathbf{N}}\right\}_{\mathbf{N}}$ by a (parallel) AMG method to efficiently solve the systems.
As a bonus this will permit us to analyze the impact of (some) of the different choices for the interface mean.

To devise the preconditioners for these problems we want to leverage on spectral information about the sequence $\left\{J_{\mathrm{N}}\right\}_{\mathrm{N}}$

$$
\lim _{\mathbb{N} \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} F\left(\lambda_{i}\left(J_{\mathrm{N}}\right)\right)=\frac{1}{\mu_{k}(D)} \int_{D} F(f(\mathbf{x})) \mathrm{d} \mathbf{x}, \quad \forall F \in C_{c}(\mathbb{C})
$$

f is a measurable function $f: D \subset \mathbb{R}^{k} \rightarrow \mathbb{C}$,
4 $\mu_{k}(\cdot)$ represent the Lebesgue measure on \mathbb{R}^{k},
$C_{c}(\mathbb{C})$ is the space of continuous functions with compact support.
Informal idea: "If we assume that N is large enough, then the eigenvalues of the matrix J_{N}, except possibly for $o(N)$ outliers, are approximately equal to the samples of f over a uniform grid in $D^{\prime \prime}$

\%. The expression in the Jacobian case

Theorem (Bertaccini, D’Ambra, D., Filippone)

The sequence $\left\{J_{N}^{(k, j)}\right\}_{N}$ obtained using either the arithmetic or up-stream averages, for $K(p), s(p)$ given by the Van Genuchten model is distributed in the sense of the eigenvalues as the function

$$
f(\mathbf{x}, \theta)=C \rho \phi s^{\prime}\left(\mathbf{p}^{(k, j)}(\psi(\mathbf{x}))\right)+K\left(\mathbf{p}^{(k, j)}(\psi(\mathbf{x}))\right)\left(8-2 \cos \left(\theta_{1}\right)-2 \cos \left(\theta_{2}\right)-2 \cos \left(\theta_{3}\right)\right),
$$

where $\mathbf{x} \in[0,1]^{3}, \theta \in[-\pi, \pi]^{3}, \psi(\mathbf{x})$ is the function mapping $[0,1]^{3}$ cube to the physical domain, and $C=\lim _{N, N_{T} \rightarrow \infty} \frac{h}{\Delta t}$.

!

! Eigenvalue distribution is determined by the diffusive part,
! III-conditioning comes both from diffusive behavior and decay to zero of $K(p)$,
! We use the "diffusive part" of $\left\{J_{N}^{(k, j)}\right\}_{N}$ as $\left\{M_{N}\right\}_{N}$ (throw away the transport term).

Spectral Analysis: a visual representation

Arithmetic mean. Comparison of the eigenvalues and spectral symbol with $h_{z}=40 /(N-1), \Delta t=0.1$, and $N=800$ on different time steps and for different iterates of the Newton method \Rightarrow it works also far from the asymptotic regime.

Spectral Analysis: a visual representation

Upstream mean. Comparison of the eigenvalues and spectral symbol with $h_{z}=40 /(N-1), \Delta t=0.1$, and $N=800$ on different time steps and for different iterates of the Newton method \Rightarrow it works also far from the asymptotic regime.

A link with the literature

A The idea of using the diffusive part to precondition is somewhat natural, see, e.g., [Jones \& Woodward, 2001], but now we have a proof of why it works,
The schematic of the proof works for different choices of the fluxes at the interfaces,
\int We use the Generalized Locally Toeplitz machinery to achieve the formal result; see the books/papers by [Serra \& Garoni 2017], [Barbarino, Serra, Garoni 2020].

But
$\mathcal{\sim}$ We still need to find a way to apply $\left\{M_{N}^{-1}\right\}_{N}$ sequence: but now the sequence is guaranteed to be SPD!
\mathbf{i} As per the discussed plan, we will use an Algebraic MultiGrid method to generate a $\left\{\tilde{M}_{N}^{-1}\right\}_{\mathbf{N}} \approx\left\{M_{N}^{-1}\right\}_{\mathrm{N}}$ sequence.

</> Parallel Sparse Computation Toolkit - \langle psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:

- Domain decomposition preconditioners of Schwartz type
- Algebraic multigrid with aggregation schemes

- Parallel coupled Weighted Matching Based Aggregation
- Smoothed Aggregation (Vaněk, Mandel, Brezina)
- Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS, ℓ_{1} variants) that can be coupled with specialized block (approximate) solvers MUMPS, SuperLU, incomplete factorizations ((H)AINV, (H)INVK/L, (H)ILU-type)
- V-Cycle, W-Cycle, K-Cycle

</> Opensource code, BSD3 License, free as in free $\mathbb{I D}$ and as in free \mathbb{Q}.

</> The KINSOL Software Framework

A To implement the Newton part of the Newton-Krylov solver we implemented an extension to the SUNDIALS KINSOL package.

Preconditioners: generating the $\left\{\tilde{M}_{N}\right\}_{N}$ sequence

Among the different methods implemented in PSCToolkit we apply:
AS: One-level Additive Schwarz preconditioner.
DSVMB: the smoothed aggregation scheme introduced in (Vaněk, Mandel, Brezina 1996), and applied in a parallel setting by a decoupled approach, where each process applies the coarsening algorithm to its subset of dofs, ignoring interactions with dofs owned by other processes (D'Ambra, di Serafino, Filippone).
SMATCH: the smoothed aggregation scheme introduced in (D'Ambra, Vassilevski, 2013; D’Ambra, Filippone, Vassilevski 2018; D’Ambra, D. Filippone, 2021). It relies on a parallel coupled aggregation of dofs based on a maximum weighted graph matching algorithm, where the maximum size of aggregates can be chosen in a flexible way by a user-defined parameter.

Preconditioners: generating the $\left\{\tilde{M}_{N}\right\}_{N}$ sequence

Among the different methods implemented in PSCToolkit we apply:
AS: One-level Additive Schwarz preconditioner. AS uses one layer of mesh points in each direction as overlap among the subdomains, each of them assigned to different processes, and applies an Incomplete LU factorization with no fill-in for computing the local subdomain matrix inverses

AMG Setup Symmetric V-cycle with 1 iteration of hybrid backward/forward Gauss-Seidel as pre/post-smoother at the intermediate levels. As coarsest-level solver we use a parallel iterative procedure based on the preconditioned Conjugate Gradient method with block-Jacobi as preconditioner, where ILU with 1 level of fill-in is applied on the local diagonal blocks.

Test problem and solver details

- Richards equation discretized with upstream averages on a parallelepipedal domain Ω of size $\left[0, L_{x}\right] \times\left[0, L_{y}\right] \times[0, L]$,
- Boundary conditions: water at height $z=L$ such that the pressure head becomes zero in a square region at the center of the top layer, ($\frac{a}{4} \leq x \leq \frac{3 a}{4}$, $\frac{b}{4} \leq y \leq \frac{3 b}{4}$), and is fixed to the value $h=h_{r}$ on all the remaining boundaries,
- Initial condition: $p(x, y, z, 0)=h_{r}$. In all cases we run the simulation for $t \in[0,2]$ and $N_{t}=10$.

Solver options

PSBLAS-based Right preconditioned Restarted GMRES(10) with restarting step equal to 10. Relative residual stop $\left\|J \mathbf{d}_{r}+\boldsymbol{\Phi}\right\|<\eta\|\boldsymbol{\Phi}\|$ with $\eta=10^{-7}$ or maximum number of iterations: 200.

A We update the AMG hierarchies by reusing the projectors and rebuilding the smoothers.

- Richards equation discretized with upstream averages on a parallelepipedal domain Ω of size $\left[0, L_{x}\right] \times\left[0, L_{y}\right] \times[0, L]$,
- Boundary conditions: water at height $z=L$ such that the pressure head becomes zero in a square region at the center of the top layer, ($\frac{a}{4} \leq x \leq \frac{3 a}{4}$, $\frac{b}{4} \leq y \leq \frac{3 b}{4}$), and is fixed to the value $h=h_{r}$ on all the remaining boundaries,
- Initial condition: $p(x, y, z, 0)=h_{r}$. In all cases we run the simulation for $t \in[0,2]$ and $N_{t}=10$.

Strong scaling

Parallelepiped $[0,64] \times[0,64] \times[0,1], N_{x}=N_{y}=800$ mesh points in the x and y directions, $N_{z}=40$ mesh points in the vertical direction. Total number of 20 millions dofs, on a number of computational cores from 1 to 256.

- Richards equation discretized with upstream averages on a parallelepipedal domain Ω of size $\left[0, L_{x}\right] \times\left[0, L_{y}\right] \times[0, L]$,
- Boundary conditions: water at height $z=L$ such that the pressure head becomes zero in a square region at the center of the top layer, ($\frac{a}{4} \leq x \leq \frac{3 a}{4}$, $\frac{b}{4} \leq y \leq \frac{3 b}{4}$), and is fixed to the value $h=h_{r}$ on all the remaining boundaries,
- Initial condition: $p(x, y, z, 0)=h_{r}$. In all cases we run the simulation for

$$
t \in[0,2] \text { and } N_{t}=10
$$

Weak scaling

Parallelepiped $\Omega(n p)=\left[0,2^{p} \times 4.0\right] \times\left[0,2^{q} \times 4.0\right] \times[0,1.0]$ splitted on $n p=p \times q$ processes for increasing $p=0, \ldots, 7, q=0, \ldots, 6$, corresponding mesh with $N(p \times q)=\left(2^{p} N_{x}, 2^{q} N_{y}, N_{z}\right)$ dofs, where $N_{x}=N_{y}=50$, and $N_{z}=40$. Global size up to about 829 millions of dofs on 8192 processes.

Test problem and solver details

- Richards equation discretized with upstream averages on a parallelepipedal domain Ω of size $\left[0, L_{x}\right] \times\left[0, L_{y}\right] \times[0, L]$,
- Boundary conditions: water at height $z=L$ such that the pressure head becomes zero in a square region at the center of the top layer, ($\frac{a}{4} \leq x \leq \frac{3 a}{4}$, $\frac{b}{4} \leq y \leq \frac{3 b}{4}$), and is fixed to the value $h=h_{r}$ on all the remaining boundaries,
- Initial condition: $p(x, y, z, 0)=h_{r}$. In all cases we run the simulation for

$$
t \in[0,2] \text { and } N_{t}=10
$$

Machine \& Environment

All the experiments are executed on the CPU cores, with no usage of hyperthreading, of the Marconi-100 supercomputer ($18^{\text {th }}$ in the November 2021 TOP500 list.

Compilers: gnu/8.4.0; Libraries: openmpi/4.0.3, openblas/0.3.9, PSBLAS 3.7.0.2 and AMG4PSBLAS 1.0.

Strong scaling: 20 Milion Dofs on 1 to 256 cores.

Avg. number of linear iterations
Efficiency: ranging from 59\% to 66\%.

Time per iteration (s)

$\boldsymbol{\lambda}$ Strong scaling: 20 Milion Dofs on 1 to 256 cores.

Total time to solution (s)

Time per iteration (s)

Efficiency: ranging from 59\% to 66\%.

Weak scaling: 829 Milion Dofs on 1 to 8192 cores.

Avg. number of linear iterations

Time per iteration (s)

Weak scaling: 829 Milion Dofs on 1 to 8192 cores.

Total time to solution (s)

Efficiency (\%)

$\bar{\square}$ Concluding remarks

\checkmark Determined the spectral properties of the Jacobian matrix sequence for a range of discretization choices,
We now have a formal proof of the intuition behind the "preconditioning with the diffusive part' idea,

7 Concluding remarks

\checkmark Determined the spectral properties of the Jacobian matrix sequence for a range of discretization choices,
\checkmark We now have a formal proof of the intuition behind the "preconditioning with the diffusive part' idea,
iii Performances of our strategy are quite promising in view of exploring extreme scalability.

\bar{Z} Concluding remarks

\checkmark Determined the spectral properties of the Jacobian matrix sequence for a range of discretization choices,
\checkmark We now have a formal proof of the intuition behind the "preconditioning with the diffusive part' idea,
iii Performances of our strategy are quite promising in view of exploring extreme scalability.
! PSCToolkit has also a GPU support and we would like to explore also in that direction.
</> We have an integration in PARFLOW planned to treat more realistic and coupled problems.

\bar{Z} Concluding remarks

\checkmark Determined the spectral properties of the Jacobian matrix sequence for a range of discretization choices,
We now have a formal proof of the intuition behind the "preconditioning with the diffusive part' idea,
iii Performances of our strategy are quite promising in view of exploring extreme scalability.
! P PSCToolkit has also a GPU support and we would like to explore also in that direction.
</> We have an integration in ParFlow planned to treat more realistic and coupled problems.

- Bertaccini, D., D'Ambra, P., D., F., \& Filippone, S. (2021). Why diffusion-based preconditioning of Richards equation works: spectral analysis and computational experiments at very large scale. arXiv preprint arXiv: 2112. 05051

Thank you!

Strong scaling: 20 Milion Dofs on 1 to 256 cores.

	VDSVBM		VSMATCH		AS	
np	N Jac.s	NLin It.s	N Jac.s	NLin It.s	N Jac.s	NLin It.s
1	3	36	3	38	3	43
4	3	37	3	38	4	39
16	3	37	3	38	4	39
64	3	37	3	38	4	39
256	3	37	3	38	4	39

Table 1: Strong scaling. Number of nonlinear iterations (NLin It.s), and number of computed Jacobians (N Jac.s) for the three preconditioners.

Weak scaling: 829 Milion Dofs on 1 to 8192 cores.

