
Scalability Results for the Solution of the Richards Equation

F. Durastante

GIMC SIMAI Young 2022

Thursday, September 29th

MS 01 - Efficient linear solvers for coupled geophysical simulations.

Università di Pisa, # fabio.durastante@unipi.it

Istituto per le Applicazioni del Calcolo “M. Picone” – CNR

mailto:fabio.durastante@unipi.it

Collaborators and Funding

Daniele Bertaccini
Università degli Studi di Roma

“Tor Vergata”

Dipartimento di Matematica

IAC-CNR

Pasqua D’Ambra,
Consiglio Nazionale delle Ricerche

Istituto per le Applicazioni del

Calcolo “M. Picone”

Salvatore Filippone,
Università degli Studi di Roma

“Tor Vergata”

Dipartimento di Ingegneria Civile

e Ingegneria Informatica

IAC-CNR

The Richards Equation: a fluid flow model

Richards equation models fluid flow in the unsaturated (vadose) zone, it is

Ó non-linear the parameters that control the flow are dependent on the saturation

of the media,

Ó a combination of Darcy’s law and the principle of mass conservation

∂ (ρ ϕs(p))

∂t
+∇ · q = 0,

Ó s(p) is the saturation at pressure head p of a fluid with density ρ and terrain

porosity ϕ,

Ó q is the volumetric water flux, using Darcy’s law it is written as

q = −K (p) (∇p + cẑ) ,

Ó K (p) the hydraulic conductivity,

Ó c the cosine of the angle between the downward z-axis ẑ and the direction of the

gravity force 1

The Richards Equation: constitutive equations

To close the model we need equations for both s(p) and K (p), we use the Van

Genuchten formulation [Celia et al. 1990; Van Genuchten, 1980]

s(p) =
α(ss − sr)

α+ |p|β
+ sr , and K (p) = Ks

a

a+ |p|γ
,

where

Ó all the parameters (α, β, γ, a) are fitted on real data and assumed to be constant

in the media;

Ó Ks is the saturated hydraulic conductivity.

2

The Richards Equation: constitutive equations

To close the model we need equations for both s(p) and K (p), we use the Van

Genuchten formulation [Celia et al. 1990; Van Genuchten, 1980]

−100−80 −60 −40 −20 0

0.1

0.15

0.2

0.25

p

s(
p
)

−100−80 −60 −40 −20 0
0

2

4

6

8

·10−3

p

K
(p
)

2

Cell-centered finite difference discretization

We use a discretization on a cell-centered finite difference tensor mesh on

Ó a parallelepiped discretized with N = (Nx ,Ny ,Nz) nodes,

Ó the cell centers {xi ,j ,k = (ihx , jhy , khz)}N−1
i ,j ,k=0, for

h = (hx , hy , hz) = (Lx , Ly , Lz)/(N− 1);

Ó the relative interfaces located at midpoints between adjacent nodes;

Ó Nt uniform time steps, i.e., the grid {tl = l∆ t}Nt−1
l=0 for ∆ t = 1/(Nt − 1).

This gives the non-linear equations:

Φ(p
(l)
i ,j ,k) =

ρϕ

∆t

(
s
(
p
(l)
i ,j ,k

)
− s

(
p
(l−1)
i ,j ,k

))
+ q

(l)
i+1/2,j ,k − q

(l)
i−1/2,j ,k + q

(l)
i ,j+1/2,k − q

(l)
i ,j−1/2,k

+ q
(l)
i ,j ,k+1/2 − q

(l)
i ,j ,k−1/2 + fi ,j ,k ≡ 0, for i , j , k = 1, . . . ,N− 2,

with

q
(l)
i+1/2,j ,k = −

AV
K

(l)
i+1,i

(
p
(l)
i+1,j,k−p

(l)
i,j,k

h2x

)
, q

(l)
i−1/2,j ,k = −

AV
K

(l)
i−1,i

(
p
(l)
i,j,k−p

(l)
i−1,j,k

h2x

)
,

q
(l)
i ,j+1/2,k = −

AV
K

(l)
j+1,j

(
p
(l)
i,j+1,k−p

(l)
i,j,k

h2y

)
, q

(l)
i ,j−1/2,k = −

AV
K

(l)
j−1,j

(
p
(l)
i,j,k−p

(l)
i,j−1,k

h2y

)
,

q
(l)
i ,j ,k+1/2 = −

AV
K

(l)
k+1,k

(
p
(l)
i,j,k+1−p

(l)
i,j,k

h2z

)
− K(pi,j,k+1)

2hz
,

q
(l)
i ,j ,k−1/2 = −

AV
K

(l)
k−1,k

(
p
(l)
i,j,k−p

(l)
i,j,k−1

h2z

)
− K(pi,j,k−1)

2hz
,

3

Cell-centered finite difference discretization

Φ(p
(l)
i ,j ,k) =

ρϕ

∆t

(
s
(
p
(l)
i ,j ,k

)
− s

(
p
(l−1)
i ,j ,k

))
+ q

(l)
i+1/2,j ,k − q

(l)
i−1/2,j ,k + q

(l)
i ,j+1/2,k − q

(l)
i ,j−1/2,k

+ q
(l)
i ,j ,k+1/2 − q

(l)
i ,j ,k−1/2 + fi ,j ,k ≡ 0, for i , j , k = 1, . . . ,N− 2,

with

q
(l)
i+1/2,j ,k = −

AV
K

(l)
i+1,i

(
p
(l)
i+1,j,k−p

(l)
i,j,k

h2x

)
, q

(l)
i−1/2,j ,k = −

AV
K

(l)
i−1,i

(
p
(l)
i,j,k−p

(l)
i−1,j,k

h2x

)
,

q
(l)
i ,j+1/2,k = −

AV
K

(l)
j+1,j

(
p
(l)
i,j+1,k−p

(l)
i,j,k

h2y

)
, q

(l)
i ,j−1/2,k = −

AV
K

(l)
j−1,j

(
p
(l)
i,j,k−p

(l)
i,j−1,k

h2y

)
,

q
(l)
i ,j ,k+1/2 = −

AV
K

(l)
k+1,k

(
p
(l)
i,j,k+1−p

(l)
i,j,k

h2z

)
− K(pi,j,k+1)

2hz
,

q
(l)
i ,j ,k−1/2 = −

AV
K

(l)
k−1,k

(
p
(l)
i,j,k−p

(l)
i,j,k−1

h2z

)
− K(pi,j,k−1)

2hz
,

3

Values at the interfaces

The selection of the form of the average term that can lead to the more realistic

simulations does depend on the problem and is still an open problem.

Ó Denote by KU and KL the values of K on the opposite sides of the interface

arithmetic mean ARITK = (KU + KL)/2,

geometric mean
GEOM

K (l) =
√
KUKL,

upstream-weighted mean

UP
K (l) =

KU , pU − pL ≥ 0,

KL, pU − pL < 0,
integral mean

INT
K (l) =

 1
pL−pU

∫ pU
pL

K (ψ)dψ, pL ̸= pU ,

KU , otherwise.

Ó A combination of the above in the different directions
4

¨ The solution procedure

1. Estimate, fix all the parameters involved in the model, and select the opportune

interface values for the discretization,

2. Select a time stepping method: Backward Euler with uniform steps,

3. Iterative solution of the nonlinear equation with an inexact-Newton method

4. Iterative solution of the linear systems with the Jacobian matrix:

Ó The Jacobian matrix J = JΦ can then be computed in closed form,

Ó At the core of the (distributed) parallel solution resides the solution of the (right)

preconditioned linear system

JM−1(Mdk) = −Φ(p(k,l)),

5

¨ The solution procedure

1. Estimate, fix all the parameters involved in the model, and select the opportune

interface values for the discretization,

2. Select a time stepping method: Backward Euler with uniform steps,

3. Iterative solution of the nonlinear equation with an inexact-Newton method

4. Iterative solution of the linear systems with the Jacobian matrix:

Ó The Jacobian matrix J = JΦ can then be computed in closed form,

Ó At the core of the (distributed) parallel solution resides the solution of the (right)

preconditioned linear system

JM−1(Mdk) = −Φ(p(k,l)),

5

¨ The solution procedure

1. Estimate, fix all the parameters involved in the model, and select the opportune

interface values for the discretization,

2. Select a time stepping method: Backward Euler with uniform steps,

3. Iterative solution of the nonlinear equation with an inexact-Newton method

4. Iterative solution of the linear systems with the Jacobian matrix:

Ó The Jacobian matrix J = JΦ can then be computed in closed form,

Ó At the core of the (distributed) parallel solution resides the solution of the (right)

preconditioned linear system

JM−1(Mdk) = −Φ(p(k,l)),

5

¨ The solution procedure

1. Estimate, fix all the parameters involved in the model, and select the opportune

interface values for the discretization,

2. Select a time stepping method: Backward Euler with uniform steps,

3. Iterative solution of the nonlinear equation with an inexact-Newton method

4. Iterative solution of the linear systems with the Jacobian matrix:

Ó The Jacobian matrix J = JΦ can then be computed in closed form,

Ó At the core of the (distributed) parallel solution resides the solution of the (right)

preconditioned linear system

JM−1(Mdk) = −Φ(p(k,l)),

5

(The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive

definite linear systems. Nevertheless, we are dealing with a non symmetric problem.

®What can we do?

å Describe the asymptotic spectral properties of the sequence {JN}N,

å Find an asymptotically spectrally equivalent symmetric positive definite matrix

sequence {MN}N to {JN}N,
å Approximate {MN}N by a (parallel) AMG method to efficiently solve the systems.

As a bonus this will permit us to analyze the impact of (some) of the different choices

for the interface mean.

6

(The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive

definite linear systems. Nevertheless, we are dealing with a non symmetric problem.

®What can we do?

å Describe the asymptotic spectral properties of the sequence {JN}N,
å Find an asymptotically spectrally equivalent symmetric positive definite matrix

sequence {MN}N to {JN}N,

å Approximate {MN}N by a (parallel) AMG method to efficiently solve the systems.

As a bonus this will permit us to analyze the impact of (some) of the different choices

for the interface mean.

6

(The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive

definite linear systems. Nevertheless, we are dealing with a non symmetric problem.

®What can we do?

å Describe the asymptotic spectral properties of the sequence {JN}N,
å Find an asymptotically spectrally equivalent symmetric positive definite matrix

sequence {MN}N to {JN}N,
å Approximate {MN}N by a (parallel) AMG method to efficiently solve the systems.

As a bonus this will permit us to analyze the impact of (some) of the different choices

for the interface mean.

6

(The plan

Scalable AMG preconditioners

Algebraic MultiGrid methods are especially well suited for solving symmetric positive

definite linear systems. Nevertheless, we are dealing with a non symmetric problem.

®What can we do?

å Describe the asymptotic spectral properties of the sequence {JN}N,
å Find an asymptotically spectrally equivalent symmetric positive definite matrix

sequence {MN}N to {JN}N,
å Approximate {MN}N by a (parallel) AMG method to efficiently solve the systems.

As a bonus this will permit us to analyze the impact of (some) of the different choices

for the interface mean.

6

The asymptotic spectrum of a sequence of matrices

To devise the preconditioners for these problems we want to leverage on spectral

information about the sequence {JN}N

lim
N→∞

1

N

N∑
i=1

F (λi (JN)) =
1

µk(D)

∫
D
F (f (x))dx, ∀F ∈ Cc(C),

Ó f is a measurable function f : D ⊂ Rk → C,
Ó µk(·) represent the Lebesgue measure on Rk ,

Ó Cc(C) is the space of continuous functions with compact support.

Informal idea: “If we assume that N is large enough, then the eigenvalues of the

matrix JN, except possibly for o(N) outliers, are approximately equal to the samples of

f over a uniform grid in D”

7

The expression in the Jacobian case

Theorem (Bertaccini, D’Ambra, D., Filippone)

The sequence {J(k,j)N }N obtained using either the arithmetic or up-stream averages, for

K (p), s(p) given by the Van Genuchten model is distributed in the sense of the eigenvalues

as the function

f (x, θ) = Cρϕs ′(p(k,j)(ψ(x))) + K (p(k,j)(ψ(x)))(8− 2 cos(θ1)− 2 cos(θ2)− 2 cos(θ3)),

where x ∈ [0, 1]3, θ ∈ [−π, π]3, ψ(x) is the function mapping [0, 1]3 cube to the physical

domain, and C = limN,NT→∞
h
∆t .

 Take home messages:

, Eigenvalue distribution is determined by the diffusive part,

, Ill-conditioning comes both from diffusive behavior and decay to zero of K (p),

, We use the “diffusive part” of {J(k,j)N }N as {MN}N (throw away the transport term).

8

Ø Spectral Analysis: a visual representation

-3 -2 -1 0 1 2 3

10-4

10-3

Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

Arithmetic mean. Comparison of the eigenvalues and spectral symbol with

hz = 40/(N − 1), ∆t = 0.1, and N = 800 on different time steps and for different

iterates of the Newton method ⇒ it works also far from the asymptotic regime.

9

Ø Spectral Analysis: a visual representation

-3 -2 -1 0 1 2 3

10-4

10-3

Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

-3 -2 -1 0 1 2 3

10-4

10-3

10-2
Eigenvalue
GLT Symbol

Upstream mean. Comparison of the eigenvalues and spectral symbol with

hz = 40/(N − 1), ∆t = 0.1, and N = 800 on different time steps and for different

iterates of the Newton method ⇒ it works also far from the asymptotic regime.
9

@ A link with the literature

. The idea of using the diffusive part to precondition is somewhat natural, see, e.g.,

[Jones & Woodward, 2001], but now we have a proof of why it works,

Ó The schematic of the proof works for different choices of the fluxes at the

interfaces,

å We use the Generalized Locally Toeplitz machinery to achieve the formal result;

see the books/papers by [Serra & Garoni 2017], [Barbarino, Serra, Garoni 2020].

But

å We still need to find a way to apply {M−1
N }N sequence: but now the sequence is

guaranteed to be SPD!

ñ As per the discussed(plan, we will use an Algebraic MultiGrid method to

generate a {M̃−1
N }N ≈ {M−1

N }N sequence.

10

Ð Parallel Sparse Computation Toolkit – ò psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:

• Domain decomposition preconditioners of Schwartz type

• Algebraic multigrid with aggregation schemes

• Parallel coupled Weighted Matching Based Aggregation

• Smoothed Aggregation (Vaněk, Mandel, Brezina)

• Parallel Smoothers (Block-Jacobi, DD-Schwartz,

Hybrid-GS/SGS/FBGS, ℓ1 variants) that can be coupled with

specialized block (approximate) solvers MUMPS, SuperLU,

incomplete factorizations ((H)AINV, (H)INVK/L,

(H)ILU-type)

• V-Cycle, W-Cycle, K-Cycle

Ð Opensource code, BSD3 License, free as in free H and as in free ?.

11

psctoolkit.github.io

Ð The KINSOL Software Framework

. To implement the Newton part of the Newton-Krylov solver we implemented an

extension to the SUNDIALS KINSOL package.

SUNDIALS

ARKODECVODESCVODE IDA IDAS KINSOL

SUNMATRIX APINVECTOR API SUNLINEARSOLVER API SUNNONLINEARSOLVER API

SERIAL PARALLEL
(MPI)

OPENMP PTHREADS

PARHYP
(HYPRE)

PETSC

CUDA RAJA

MPI +
CUDA

MPI +
RAJA

OPENMP PSBLAS

VECTOR MODULES

DENSE

BAND

SPARSE

PSBLAS

MATRIX MODULES

DENSE BAND

LAPACK
DENSE

LAPACK
BAND

KLU SUPERLU_MT

PSBLAS
AMG4PSBLAS

MATRIX BASED
LINEAR SOLVER MODULES

MATRIX-FREE

SPBCG SPGMR

SPFGMR SPTFQMR

PCG

NEWTON

FIXED
POINT

NONLINEAR SOLVER MODULES

12

Preconditioners: generating the {M̃N}N sequence

Among the different methods implemented in PSCToolkit we apply:

AS: One-level Additive Schwarz preconditioner.

DSVMB: the smoothed aggregation scheme introduced in (Vaněk, Mandel,

Brezina 1996), and applied in a parallel setting by a decoupled approach,

where each process applies the coarsening algorithm to its subset of dofs,

ignoring interactions with dofs owned by other processes (D’Ambra, di

Serafino, Filippone).

SMATCH: the smoothed aggregation scheme introduced in (D’Ambra,

Vassilevski, 2013; D’Ambra, Filippone, Vassilevski 2018; D’Ambra, D.

Filippone, 2021). It relies on a parallel coupled aggregation of dofs based

on a maximum weighted graph matching algorithm, where the maximum

size of aggregates can be chosen in a flexible way by a user-defined

parameter. 13

Preconditioners: generating the {M̃N}N sequence

Among the different methods implemented in PSCToolkit we apply:

AS: One-level Additive Schwarz preconditioner. AS uses one layer of mesh

points in each direction as overlap among the subdomains, each of them

assigned to different processes, and applies an Incomplete LU

factorization with no fill-in for computing the local subdomain matrix

inverses

AMG Setup Symmetric V-cycle with 1 iteration of hybrid backward/forward

Gauss-Seidel as pre/post-smoother at the intermediate levels. As

coarsest-level solver we use a parallel iterative procedure based on the

preconditioned Conjugate Gradient method with block-Jacobi as

preconditioner, where ILU with 1 level of fill-in is applied on the local

diagonal blocks.

13

å Test problem and solver details

• Richards equation discretized with upstream averages on a parallelepipedal

domain Ω of size [0, Lx]× [0, Ly]× [0, L],

• Boundary conditions: water at height z = L such that the pressure head

becomes zero in a square region at the center of the top layer, (a4 ≤ x ≤ 3a
4 ,

b
4 ≤ y ≤ 3b

4), and is fixed to the value h = hr on all the remaining boundaries,

• Initial condition: p(x , y , z , 0) = hr . In all cases we run the simulation for

t ∈ [0, 2] and Nt = 10.

Solver options

PSBLAS-based Right preconditioned Restarted GMRES(10) with restarting step

equal to 10. Relative residual stop ∥Jdr +Φ∥ < η∥Φ∥ with η = 10−7 or maximum

number of iterations: 200.

. We update the AMG hierarchies by reusing the projectors and rebuilding the

smoothers. 14

å Test problem and solver details

• Richards equation discretized with upstream averages on a parallelepipedal

domain Ω of size [0, Lx]× [0, Ly]× [0, L],

• Boundary conditions: water at height z = L such that the pressure head

becomes zero in a square region at the center of the top layer, (a4 ≤ x ≤ 3a
4 ,

b
4 ≤ y ≤ 3b

4), and is fixed to the value h = hr on all the remaining boundaries,

• Initial condition: p(x , y , z , 0) = hr . In all cases we run the simulation for

t ∈ [0, 2] and Nt = 10.

Strong scaling

Parallelepiped [0, 64]× [0, 64]× [0, 1], Nx = Ny = 800 mesh points in the x and y

directions, Nz = 40 mesh points in the vertical direction. Total number of 20 millions

dofs, on a number of computational cores from 1 to 256.

14

å Test problem and solver details

• Richards equation discretized with upstream averages on a parallelepipedal

domain Ω of size [0, Lx]× [0, Ly]× [0, L],

• Boundary conditions: water at height z = L such that the pressure head

becomes zero in a square region at the center of the top layer, (a4 ≤ x ≤ 3a
4 ,

b
4 ≤ y ≤ 3b

4), and is fixed to the value h = hr on all the remaining boundaries,

• Initial condition: p(x , y , z , 0) = hr . In all cases we run the simulation for

t ∈ [0, 2] and Nt = 10.

Weak scaling

Parallelepiped Ω(np) = [0, 2p × 4.0]× [0, 2q × 4.0]× [0, 1.0] splitted on np = p × q

processes for increasing p = 0, . . . , 7, q = 0, . . . , 6, corresponding mesh with

N(p × q) = (2pNx , 2
qNy ,Nz) dofs, where Nx = Ny = 50, and Nz = 40. Global size

up to about 829 millions of dofs on 8192 processes.

14

å Test problem and solver details

• Richards equation discretized with upstream averages on a parallelepipedal

domain Ω of size [0, Lx]× [0, Ly]× [0, L],

• Boundary conditions: water at height z = L such that the pressure head

becomes zero in a square region at the center of the top layer, (a4 ≤ x ≤ 3a
4 ,

b
4 ≤ y ≤ 3b

4), and is fixed to the value h = hr on all the remaining boundaries,

• Initial condition: p(x , y , z , 0) = hr . In all cases we run the simulation for

t ∈ [0, 2] and Nt = 10.

Machine & Environment

All the experiments are executed on the CPU cores, with no usage of hyperthreading,

of the Marconi-100 supercomputer (18th in the November 2021 TOP500 list.

Compilers: gnu/8.4.0; Libraries: openmpi/4.0.3, openblas/0.3.9, PSBLAS

3.7.0.2 and AMG4PSBLAS 1.0.

14

� Strong scaling: 20 Milion Dofs on 1 to 256 cores.

20 22 24 26 28
60

80

100

120

140

160

np

VSMATCH
VDSVMB
AS

Avg. number of linear iterations

20 22 24 26 28

10−1

100

np

VSMATCH
VDSVMB
AS

Time per iteration (s)

Efficiency: ranging from 59% to 66%.

15

� Strong scaling: 20 Milion Dofs on 1 to 256 cores.

20 22 24 26 28

102

103

np

VSMATCH
VDSVMB
AS

Total time to solution (s)

20 22 24 26 28

10−1

100

np

VSMATCH
VDSVMB
AS

Time per iteration (s)

Efficiency: ranging from 59% to 66%.

15

� Weak scaling: 829 Milion Dofs on 1 to 8192 cores.

21 24 27 210 213

100

150

200

np

VSMATCH
VDSVMB
AS

Avg. number of linear iterations

21 24 27 210 213

10−1

10−2

np

VSMATCH
VDSVMB
AS

Time per iteration (s)

16

� Weak scaling: 829 Milion Dofs on 1 to 8192 cores.

21 24 27 210 213

20

40

60

80

np

VSMATCH
VDSVMB
AS

Total time to solution (s)

21 24 27 210 213

40

60

80

100

np

VSMATCH
VDSVMB
AS

Efficiency (%)

16

Ü Concluding remarks

✓ Determined the spectral properties of the Jacobian matrix sequence for a range

of discretization choices,

✓ We now have a formal proof of the intuition behind the “preconditioning with

the diffusive part” idea,

O Performances of our strategy are quite promising in view of exploring extreme

scalability.

> PSCToolkit has also a GPU support and we would like to explore also in that

direction.

Ð We have an integration in ParFlow planned to treat more realistic and coupled

problems.

@ Bertaccini, D., D’Ambra, P., D., F., & Filippone, S. (2021). Why diffusion-based

preconditioning of Richards equation works: spectral analysis and computational ex-

periments at very large scale. arXiv preprint arXiv: 2112. 05051

17

arXiv:2112.05051

Ü Concluding remarks

✓ Determined the spectral properties of the Jacobian matrix sequence for a range

of discretization choices,

✓ We now have a formal proof of the intuition behind the “preconditioning with

the diffusive part” idea,

O Performances of our strategy are quite promising in view of exploring extreme

scalability.

> PSCToolkit has also a GPU support and we would like to explore also in that

direction.

Ð We have an integration in ParFlow planned to treat more realistic and coupled

problems.

@ Bertaccini, D., D’Ambra, P., D., F., & Filippone, S. (2021). Why diffusion-based

preconditioning of Richards equation works: spectral analysis and computational ex-

periments at very large scale. arXiv preprint arXiv: 2112. 05051

17

arXiv:2112.05051

Ü Concluding remarks

✓ Determined the spectral properties of the Jacobian matrix sequence for a range

of discretization choices,

✓ We now have a formal proof of the intuition behind the “preconditioning with

the diffusive part” idea,

O Performances of our strategy are quite promising in view of exploring extreme

scalability.

> PSCToolkit has also a GPU support and we would like to explore also in that

direction.

Ð We have an integration in ParFlow planned to treat more realistic and coupled

problems.

@ Bertaccini, D., D’Ambra, P., D., F., & Filippone, S. (2021). Why diffusion-based

preconditioning of Richards equation works: spectral analysis and computational ex-

periments at very large scale. arXiv preprint arXiv: 2112. 05051

17

arXiv:2112.05051

Ü Concluding remarks

✓ Determined the spectral properties of the Jacobian matrix sequence for a range

of discretization choices,

✓ We now have a formal proof of the intuition behind the “preconditioning with

the diffusive part” idea,

O Performances of our strategy are quite promising in view of exploring extreme

scalability.

> PSCToolkit has also a GPU support and we would like to explore also in that

direction.

Ð We have an integration in ParFlow planned to treat more realistic and coupled

problems.

@ Bertaccini, D., D’Ambra, P., D., F., & Filippone, S. (2021). Why diffusion-based

preconditioning of Richards equation works: spectral analysis and computational ex-

periments at very large scale. arXiv preprint arXiv: 2112. 05051

17

arXiv:2112.05051

Thank you!

� Strong scaling: 20 Milion Dofs on 1 to 256 cores.

VDSVBM VSMATCH AS

np N Jac.s NLin It.s N Jac.s NLin It.s N Jac.s NLin It.s

1 3 36 3 38 3 43

4 3 37 3 38 4 39

16 3 37 3 38 4 39

64 3 37 3 38 4 39

256 3 37 3 38 4 39

Table 1: Strong scaling. Number of nonlinear iterations (NLin It.s), and number of computed

Jacobians (N Jac.s) for the three preconditioners.

� Weak scaling: 829 Milion Dofs on 1 to 8192 cores.

20 22 24 26 28 210 212 213
0

0.2

0.4

0.6

0.8

1

VDSVMB

20 22 24 26 28 210 212 213
0

0.2

0.4

0.6

0.8

1

VSMATCH

20 22 24 26 28 210 212 213
0

0.2

0.4

0.6

0.8

1

Halo Feval
Jacobian Auxiliary
Setup LinSol
Overhead

AS

	The Richards Equation
	Spectral Analysis
	Scalability Results
	Strong scaling
	Weak scaling

	Appendix

