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Large-Scale Numerical Linear Algebra

2 Large-Scale Numerical Linear Algebra

PDE discretization yields extremely large sparse linear systems that are central to scientific
simulation, hence we target 10° ~ 102 dofs.

A Scalability: Solvers must handle millions-billions of unknowns; algorithms need to
scale efficiently on HPC architectures (multi-core CPUs, GPUs, clusters), i.e.,
thousands/hundred of thousands computing units

E® Computational Cost: Direct solvers have prohibitive time/memory costs at large
scales; iterative methods (Krylov, multigrid, domain decomposition) are used to
reduce cost and exploit sparsity; robust preconditioners and error-control techniques
are needed to ensure convergence and accuracy.

Parallelism: Efficient parallel implementations demand managing communication,
load balancing, and heterogeneous resources (MPI, hybrid CPU/GPU).
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The TOP500 and EuroHPC machines

2 Large-Scale Numerical Linear Algebra

To solve such large problems we need to employ machines from the TOP500 list

System Description Cores  Power (kW)

1 El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8 GHz, AMD Instinct MI3OOA, 11,039,616 29,581
Slingshot-11, TOSS

2  Frontier - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD Instinct 9,066,176 24,607
MI250X, Slingshot-11, HPE Cray OS

3 Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4 GHz, 9,264,128 38,698
Intel Data Center GPU Max, Slingshot-11

9  LUMI - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD Instinct MI250X, 2,752,704 7,107
Slingshot-11

10 Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6 GHz, 1,824,768 7,494

NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband
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The TOP500 and EuroHPC machines

2 Large-Scale Numerical Linear Algebra

To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

System Description Cores  Power (kW)
4 JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Super- 4,801,344 13,088
chip, Quad-Rail NVIDIA InfiniBand NDR200
9 LUMI - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD Instinct MI250X, 2,752,704 7,107
Slingshot-11
10  Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6 GHz, NVIDIA A100 SXM4 1,824,768 7,494
64 GB, Quad-rail NVIDIA HDR100 Infiniband
14  MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIA 663,040 4,158.90
H100 64GB, Infiniband NDR
45  MareNostrum 5 GPP - ThinkSystem SD650 v3, Xeon Platinum 8480+ 56C 2GHz, Infiniband 725,760 5,752.90

NDR200
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2 Large-Scale Numerical Linear Algebra

To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

System Description Cores  Power (kW)
136  MeluXina - Accelerator Module - BullSequana XH2000, AMD EPYC 7452 32C 2.35GHz, 99,200 N/A
NVIDIA A100 40GB, Mellanox HDR InfiniBand
195  Karolina, GPU partition - Apollo 6500, AMD EPYC 7452 32C 2.35GHz, NVIDIA A100 SXM4 64,960 297.26
40 GB, Infiniband HDR200
258  Discoverer - BullSequana XH2000, AMD EPYC 7H12 64C 2.6GHz, Mellanox HDR InfiniBand 144,384 N/A
259  JEDI - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Super- 19,584 67
chip, Quad-Rail NVIDIA InfiniBand NDR200, ParTec/EVIDEN
297  Deucalion - PRIMEHPC FX700, Fujitsu A64FX 48C 2GHz, InfiniBand HDR100 78,336 365.21
305 VEGA HPC CPU - BullSequana XH2000, AMD EPYC 7H12 64C 2.6GHz, Mellanox InfiniBand 122,880 N/A

HDR100
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2 Large-Scale Numerical Linear Algebra

To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

APl

OpenACCQOpenMP

<2 NVIDIA
@CL(Z CUDA

The Programming Tools

The Accelerators The Leonardo Machine
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2 Large-Scale Numerical Linear Algebra

To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

APl

OpenACCQOpenMP

<2 NVIDIA
@CL(Z CUDA

The Programming Tools

The Accelerators The Leonardo Machine

(Probably) you want to focus more on the problem you wish to solve and on the
algorithmic aspects.
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» The Parallel Sparse Computation Toolkit
A prototypical use case
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Parallel Sparse Computation Toolkit - psctoolkit.github.io
3 The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG4PSBLAS:

e Existing software standards: @
— MPI, OpenMP, CUDA — (Par)Metis, 6
— Serial sparse BLAS, — AMD Q
e Attention to performance using modern Fortran; @
e Research on new preconditioners;

e No need to delve in the data structures for the user;

e Tools for error and mesh handling beyond simple algebraic
operations;

e Distributed Sparse BLAS;
e Standard Krylov solvers: CG, FCG, (R)GMRES, BiCGStab, CGS, . ..
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Parallel Sparse Computation Toolkit - psctoolkit.github.io
3 The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG4PSBLAS:

e Domain decomposition preconditioners @e

e Algebraic MultiGrid with aggregation schemes G
— Vanék, Mandel, Brezina Aggregation

— Matching Based — Smoothed Aggregation @

e Parallel Smoothers (Block-Jacobi, Hybrid-GS/SGS/FBGS, /1
variants) that can be coupled with specialized block
(approximate) solvers MUMPS, SuperLU, Incomplete
Factorizations (AINV, INVK/L, ILU-type), and with Polynomial
Accelerators (Chebyshev 15t-kind, Chebyshev 4t"-kind)

e V-Cycle, W-Cycle, K-Cycle
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Parallel Sparse Computation Toolkit - psctoolkit.github.io
3 The Parallel Sparse Computation Toolkit

Two central libraries PSBLAS and AMG4PSBLAS.

© Freely available from: https://psctoolkit.github. io, @
O Open Source with BSD 3 Clause License, Qe
W Soon to be released/interfaced with the Alya multi-physics @
solver, and the ParFlow solver, KINSOL non-linear solvers,
Deal.ll FEM library.

These are collaborations with:
Saceona U =
@= ¢) JiLIcH dedlii>{

Can be compiled/installed with either Automake/CMake or
Spack.io: “spack install psblas”.

fe
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But how does it work?
3 The Parallel Sparse Computation Toolkit

=2 You start a parallel environment—if you are familiar with MPI, an MPI
communicator,
type(psb_ctxt_type) :: ctxt
integer(psb_ipk_) :: iam, np, nth
call psb_init(ctxt)
call psb_info(ctxt,iam,np)
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But how does it work?
3 The Parallel Sparse Computation Toolkit

= You start a parallel environment—if you are familiar with MPI, an MPI
communicator,
P¥- Build a partitioned index space, each process has an arbitrary subset of the global

index space:
Build a descriptor type (psb_desc_type) : : desc

and init it with global indexes.

On process O:

vl = [1,2,3]

~ call psb_cdall(ctxt, desc, info, vl=vl)

@ N\ Y > On process 1:

vl = [4,5,6]

call psb_cdall(ctxt, desc, info, vl=vl)

You can do this with any graph partitioner: Metis, ParMetis, Zoltan, . ..
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But how does it work?
3 The Parallel Sparse Computation Toolkit

=3 You start a parallel environment—if you are familiar with MPI, an MPI
communicator,

P¥- Build a partitioned index space, each process has an arbitrary subset of the global
index space,

Allocate a sparse matrix to be filled with entries computed from your favorite
discretization scheme
type (psb_dspmat_type) :: a
call psb_spall(a,desc,info,nnz=nnz)
Fill the matrix with the entries using only global indexes in coordinate format:
call psb_spins(num_of_coeffs,irow,icol,val,a,desc,info)
The procedure for vectors is analogous psb_geall () /psb_geins ().
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But how does it work?
3 The Parallel Sparse Computation Toolkit

=2 You start a parallel environment—if you are familiar with MPI, an MPI
communicator,

P¥- Build a partitioned index space, each process has an arbitrary subset of the global
index space,

Allocate a sparse matrix to be filled with entries computed from your favorite
discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

& Assemble everything:
call psb_cdasb(desc,info)
call psb_spasb(a,desc,info,afmt='CSR') !/ or many other formats
and you are ready to perform your solution tasks.
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=2 You start a parallel environment—if you are familiar with MPI, an MPI
communicator,

P¥- Build a partitioned index space, each process has an arbitrary subset of the global
index space,

Allocate a sparse matrix to be filled with entries computed from your favorite
discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

& Assemble everything:

type(psb_d_hlg_sparse_mat) :: gpu_mold

call psb_cdasb(desc,info)

call psb_spasb(a,desc,info,mold=gpu_mold) ! even on the GPU

and you are ready to perform your solution tasks.

Solve a linear system, use Distributed BLAS operations, etc.
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Implementing a Krylov method

4 Implementing a Krylov method

/& The whole infrastructure allows to implement Krylov methods in a simple way:
© Write down the implementation in terms of BLAS-like operations,
<[> Transform them into the corresponding PSBLAS calls.
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/& The whole infrastructure allows to implement Krylov methods in a simple way:
© Write down the implementation in terms of BLAS-like operations,
<[> Transform them into the corresponding PSBLAS calls.

To look at a few examples:

Op BLAS PSBLAS
a = XTy alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc
,info)

y = aAx+ fy dgemv('N',n,n,alpha,A,n,x, | psb_spmm(alpha,A,x,beta,y,
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daxpy(n, alpha, x, 1, | ,desc,info)
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4 Implementing a Krylov method

/& The whole infrastructure allows to implement Krylov methods in a simple way:
© Write down the implementation in terms of BLAS-like operations,
<[> Transform them into the corresponding PSBLAS calls.

To look at a few examples:

Op BLAS PSBLAS
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v, D

||X||2 dnrm2(n,x,1) psb_genrm2(x,desc,info)
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AN,

Template CG

PSBLAS Implementation

Compute rO —p — ax(©®

fori=1,2,...
solve Mz(I=1) = p(i—1)
pi_q = ri=DT (=1
ifi=1
p(D = 20
else
Bi—1=pi-1/pi—2
p® =20=D 4 g pi=D
endif
q® = ap® .
ai = pi_1/p" q®

X0 = (=1 4 o p®
() = (=1 _ iq®
Cheg:k convergence:
Ir® 12 < €llbll

end

call psb_geaxpby(one,b,zero,r,desc_a,info)
rho = zero
iterate: do it = 1, itmax

call preciapply(r,z,desc_a,info)

rho_old = rho
rho = psb_gedot(r,z,desc_a,info)
if (it == 1) then

call psb_geaxpby(one,z,zero,p,desc_a,info)
else

beta = rho/rho_old

call psb_geaxpby(one,z,beta,p,desc_a,info)
endif
call psb_spmm(one,A,p,zero,q,desc_a,info)
sigma = psb_gedot(p,q,desc_a,info)
alpha = rho/sigma
call psb_geaxpby(alpha,p,one,x,desc_a,info)
call psb_geaxpby(-alpha,q,one,r,desc_a,info)

rn2 = psb_genrm2(r,desc_a,info)
bn2 = psb_genrm2(b,desc_a,info)
err = rn2/bn2

if (err.lt.eps) exit iterate
end do iterate
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An example Conjugate Gradient method

4 Implementing a Krylov method

*

<[>

Since all operations are
library operations these
are offloaded to GPU if
the format is right.

The library uses a
state-pattern design, if
you implement a
different sparse matrix
format, this code
remains identical.

You should implement
it also with some error
check using the content
of the info variable.



Preconditioners

4 Implementing a Krylov method

To reach convergence Krylov methods also need preconditioners, i,e., we want to solve
the preconditioned system:

B 'Ax = B~ 1p,
with matrix B—! ~ A~ ! (left preconditioner) such that:
Algorithmic scalability max; /\,-(B_lA) ~ 1 being independent of n,
Linear complexity the action of B~! costs as little as possible, the best being O(n) flops,

Implementation scalability in a massively parallel computer, B—! should be composed of
local actions, performance should depend linearly on the number of
processors employed.
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?/A\g Algebraic Multigrid Algorithms

4 Implementing a Krylov method

Given Matrix A € R"*" SPD

Wanted Iterative method B to precondition the CG/FCG
method:

e Hierarchy of systems
Ax_b;, 1 =0,..., nlev

e Transfer operators:
Py : R R™

Missing Structural/geometric infos

Prolongator: “Low frequencies”

Smoother: “High frequencies”

M : R" — R™ P, :R" — R+

13/28 Complementarity of Smoother and Prolongator
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?/A\$ What is our recipe?

4 Implementing a Krylov method

e The smoother M is a standard iterative solver with good parallel properties, e.g.,
£1-Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc., possibly with a polynomial
accelerator,

14/28



N

?/A\$ What is our recipe?

4 Implementing a Krylov method

e The smoother M is a standard iterative solver with good parallel properties, e.g.,
£1-Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc., possibly with a polynomial
accelerator,

e The prolongator P is built by dofs aggregation based on matching in the weighted

(adjacency) graph of A or by decoupled Vanék, Mandel and Brezina smoothed
aggregation.
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4 Implementing a Krylov method

The smoother M is a standard iterative solver with good parallel properties, e.g.,
£1-Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc., possibly with a polynomial
accelerator,

The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A or by decoupled Vanék, Mandel and Brezina smoothed
aggregation.

The coarse solver when a large number of processes is used is again a preconditioned
Krylov method, otherwise a distributed direct solver (e.g., MUMPS, SuperLU _dist).
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?/A\$ What is our recipe?

4 Implementing a Krylov method

e The smoother M is an iterative solver with good parallel properties:
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4 Implementing a Krylov method

e The smoother M is an iterative solver with good parallel properties:
GS A=M —N,withM =L+ Dand N = —LT, where D = diag(A) and L = tril(A) is
intrinsically sequential!
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?/A\$ What is our recipe?

4 Implementing a Krylov method

e The smoother M is an iterative solver with good parallel properties:
GS A=M — N,withM = L+ Dand N = —L7, where D = diag(A) and L = tril(4) is
intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.
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4 Implementing a Krylov method

e The smoother M is an iterative solver with good parallel properties:
GS A=M — N,withM =L+ Dand N = —LT, where D = diag(A) and L = tril(A) is
intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.
£1-HGS Onprocess p = 1,...,n, relative to the index set {2, we factorize
App = Lyp + Dpp + Ly, for Dy, = diag(4,p) and L, = trilu(4,,) and select:

My, _nes = diag((Me, —Hes)p)p=1,...n,»
(Me,—nes)p =Lpp + Dpp + Deyp,

(de)iy =) ayl.

i b
je
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?/A\$ What is our recipe?

4 Implementing a Krylov method

e The smoother M is an iterative solver with good parallel properties:
GS A=M — N,withM = L+ Dand N = —L7, where D = diag(A) and L = tril(4) is
intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.
£1-HGS Onprocessp = 1,...,n, relative to the index set {2, we factorize
App = Lyp + Dpp + LT for D, = diag(Ayp) and L, = trilu(A,,) and select:

My, —nes = diag((Me, —Hes)p)p=1,...n,

AINV Block-Jacobi with an approximate inverse factorization on the block = suitable for GPU
application!
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What is our recipe?

4 Implementing a Krylov method

e The smoother M is an iterative solver with good parallel properties:

GS
HGS

£1-HGS

AINV

POLY

14/28

A=M —N,withM =L+ Dand N = —LT, where D = diag(A) and L = tril(A) is
intrinsically sequential!

Inexact block-Jacobi version of GS, in the portion of the row-block local to each process
the method acts as the GS method.

On processp = 1,...,n, relative to the index set {2, we factorize

App = Lyp + Dpp + LT for D, = diag(Ayp) and L, = trilu(A,,) and select:

My, —nes = diag((Me, —Hes)p)p=1,...n,

Block-Jacobi with an approximate inverse factorization on the block = suitable for GPU
application!

Polynomial accelerators, classical and modified polynomial acceleration for stationary
iterative methods to accelerate convergence = suitable for GPU application!
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?/A\$ What is our recipe?

4 Implementing a Krylov method

e The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.
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4‘\\\ What is our recipe?

4 Implementing a Krylov method

e The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.
Givenw € R", let P € R"" and Py € R™ "V be a prolongator and a complementary
prolongator, such that:

R" = Range(P) & Range(P;), n=n.+n;
w € Range(P): coarse space Range(Py): complementary space
PTAP PTAP; > _ < A Ag )

T —
[P, By ALP, By] = ( PTAP PIAP; Ap A

A.: coarse matrix Ay hierarchical complement
Sufficient condition for efficient coarsening

Ar = PfTAPf as well conditioned as possible, i.e.,
14/28 Convergence rate of compatible relaxation: pf = ||I — Mf_lAf|| 4 <1



But how we achieve it?

4 Implementing a Krylov method

Weighted graph matching

Given a graph G = (V, &) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G
obtained by considering the weight matrix A:

~ 2a; jWiw;
A 2 J VIV
(A)ij = aij =1 2 7"

aiiwi + a;;w;

e a matching M is a set of pairwise non-adjacent edges,
containing no loops;

e a maximum product matching if it maximizes the product
of the weights of the edges e;.,; in it.
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But how we achieve it?
4 Implementing a Krylov method

Weighted graph matching

Given a graph G = (V, &) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G
obtained by considering the weight matrix A:

~ 2a; jWiw;

A 2 J VIV

(A)ij = aij =1 2 7"
aiiwi + a;;w;

e a matching M is a set of pairwise non-adjacent edges,
containing no loops;

*
R o AN N (Y
A A N AN A AN A R VR

We divide the index s’;et into matched
e a maximum product matching if it maximizes the product vertexes Z = |J;?; Gi, with

: A £ GiNG; = 0ifi # j, and unmatched
of the weights of the edges e;.,; in it. vertexes, i.e., n, singletons G;.
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From the matching to the prolongator

4 Implementing a Krylov method

We can formally define a prolongator:

P = E; Vﬂ =[p1,---, Py}

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I—BiA; = (I— (M)~ "A)(I — PBi1(P)TA) (I — M;'4) Y < nl,
where Aj, 1 = (P))TAP forl =0,...,nl — 1.
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From the matching to the prolongator

4 Implementing a Krylov method

We can formally define a prolongator:
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We can formally define a prolongator:

P= {g Vﬂ = [pP1,.--,Pj)-
Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I—BA = (I— (M) TA)(I - PBi1(P)TA)I — M A) VI < nl,
where Aj; 1 = (P)TA P forl =0,...,nl — 1.
e To increase dimension reduction we can perform more than one sweep of matching per step,

e To increase regularity of P; we can consider a smoothed prolongator by applying a Jacobi
smoother,
P} = (I — wD; 'A))Py, for D; = diag(4)).
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From the matching to the prolongator

4 Implementing a Krylov method

We can formally define a prolongator:

P= E; vﬂ =[PP

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I—BiA; = (I— (M)~ "A)(I — PBi1(P)TA) (I — M;'4) Y < nl,
where Aj, 1 = (P))TAP forl =0,...,nl — 1.
e To increase dimension reduction we can perform more than one sweep of matching per step,

e To increase regularity of P; we can consider a smoothed prolongator by applying a Jacobi
smoother,

e To increase the robustness we can use a non stationary solver as smoother.

@ We employ distributed half-approximate matching algorithms to do the construction.
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How to use them

4 Implementing a Krylov method

Using these preconditioners is very simple!
1. You declare the preconditioner: type (amg_dprec_type)

2. Initialize it, e.g., as a Multigrid Preconditioner:
call precinit(ctxt,'ML',info)
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You declare the preconditioner: type (amg_dprec_type)
Initialize it, e.g., as a Multigrid Preconditioner:
call precl/init(ctxt,'ML',info)

. Set all the ingredients you want to use

call prectset('ml_cycle','VCYCLE',info)

call preclset('outer_sweeps',1,info)

call prectset('par_aggr_alg','COUPLED',info)
call preclkset('aggr_type', 'MATCHBOXP',info)
call preclset('aggr_prol','SMOOTHED',info)
call preclset('aggr_size',8, info)

: prec
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4 Implementing a Krylov method

Using these preconditioners is very simple!

1. You declare the preconditioner: type (amg_dprec_type)

2. Initialize it, e.g., as a Multigrid Preconditioner:
call precl/init(ctxt,'ML',info)

3. Set all the ingredients you want to use
call prectset('smoother_type','L1-JACOBI',info)
call preclset('smoother_sweeps',4,info)
call preclset('coarse_solve', 'MUMPS',info)
call preclset('coarse_mat','DIST',info)
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4 Implementing a Krylov method

Using these preconditioners is very simple!
1. You declare the preconditioner: type (amg_dprec_type) :: prec
2. Initialize it, e.g., as a Multigrid Preconditioner:
call prec%init(ctxt,'ML',info)
3. Set all the ingredients you want to use call precset(...)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
...) and Smoothers (eventual matrix factorizations)
call precthierarchy_build(a,desc,info)
call preclsmoothers_build(a,desc,info)
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2. Initialize it, e.g., as a Multigrid Preconditioner:
call precinit(ctxt,'ML',info)

3. Set all the ingredients you want to use call preciset(...)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
...) and Smoothers (eventual matrix factorizations)

5. Solve the linear system:
call psb_krylov('CG',a,prec,b,x,1.0d-6,desc,info,itmax=30)
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4 Implementing a Krylov method

Using these preconditioners is very simple!
1. You declare the preconditioner: type (amg_dprec_type) :: prec

2. Initialize it, e.g., as a Multigrid Preconditioner:
call precinit(ctxt,'ML',info)

3. Set all the ingredients you want to use call preciset(...)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
...) and Smoothers (eventual matrix factorizations)

5. Solve the linear system:
call psb_krylov('CG',a,prec,b,x,1.0d-6,desc,info,itmax=30)

If the data structures are GPU data structures everything will run on the GPU.
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5 An example at scale

2{m)

Bolund is an isolated hill situated in Roskilde
Fjord, Denmark. An almost vertical
escarpment in the prevailing W-SW sector
ensures flow separation in the windward
edge resulting in a complex flow field.
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Large Eddy Simulation: Wind Simulation

Model: 3D incompressible unsteady Navier-Stokes
equations for the Large Eddy Simulations of
turbulent flows,

Discretization: low-dissipation mixed FEM (linear
FEM both for velocity and pressure) on an hybrid
unstructured meshes, which can include
tetrahedra, prisms, hexahedra, and pyramids,

Time-Stepping: non-incremental fractional-step for
pressure, explicit fourth order Runge-Kutta method
for velocity.

Full details are available in the paper:

Owen, H., Lehmkuhl, O., D’Ambra, P., D., F., & Filippone,
S. (2024). Alya toward exascale: algorithmic scalability
using PSCToolkit. ). Supercomput., 80(10), 13533-13556.



5 An example at scale

An example of solution we obtain with
this configuration.
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Preconditioner and solver setup

5 An example at scale

Pre-smoother 4 iterations of hybrid forward Gauss-Seidel

Post-smoother 4 iterations of hybrid backward Gauss-Seidel

Coarsest solver FCG preconditioned by block-Jacobi with ILU(1) block solvers

Cycle V-cycle

Aggregation  Coupled smoothed based on matching Decoupled classic
1G] <8 |G| < 16 smoothed

Label MLVSMATCH3 MLVSMATCH4 MLVSBM

FCG withe = 1073,

Initial guess for pressure from the previous time step,

Reynolds Number: RE, = Uh/v ~ 107 with U = 10ms~1,

Rossby number Rgp = 667 > 1 (i.e., no Coriolis force in the horizontal direction).
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Strong scaling results

5 An example at scale

We consider strong scaling performance on three grids:
Small n; = 5570786 ~ 6 x 10° dofs with min, = 48 to max, = 192 cores
Medium ny = 43619693 ~ 4.4 x 107 dofs with min, = 384 to max, = 1536 cores
Large ns = 345276325 ~ 0.35 x 10° dofs with min, = 3072 to max, = 12288 cores

=2 Run where performed on the Marenostrum-4 supercomputer (machine with 3456
nodes with 2 Intel Xeon Platinum 8160 CPUs with 24 cores per CPU) now superseded by
the Marenostrum-5 supercomputer.

Strong Scaling

In case of strong scaling, the number of processors is increased while the problem size
remains constant. This also results in a reduced workload per processor. Strong scaling is
mostly used for long-running CPU-bound applications to find a setup which results in a
reasonable runtime with moderate resource costs.
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Strong scaling results: iteration count
5 An example at scale
Systems size n; Systems size ny Systems size n3

1042 it A 1406 Mhe—te A

wv

C

(o]

)

o

S

©

R 100 | e 16014,!’_‘!4,!5_‘!..«"
| | | | | | ] | ] "

¥ 1 383 767 1535 3071 6143 12287

number of MPI cores number of MPI cores number of MPI cores

© MLVSBM == MLVSMATCH3 o= MLVSMATCH4 == AlyaDefCG

22/28



Strong scaling results: total solve time

5 An example at scale

Systems size n; Systems size ny Systems size n3
20 T T 50 T T
“
q) I
€ 10
=
(&)
>
©
(%)
=
AS)
| | 10 L | |
47 95 191 383 767 1535 3071 6143 12287
number of MPI cores number of MPI cores number of MPI cores

©- MLVSBM == MLVSMATCH3 =4jo= MLVSMATCH4 == AlyaDefCG
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?/A\$ Weak scaling results

5 An example at scale

We consider the same three meshes plus a fourth one with ny ~ 2.9 x 10°
e The number of dofs per core we consider is: nxcore; = 1.1 x 10° dofs.
e We run at 45, 367, 2943, 23551 cores with the four meshes.

&3 Results are obtained on the Juwels supercomputer (2271 compute nodes with 2 Intel
Xeon Platinum 8168 CPUs, of 24 cores each)

Weak scaling

In case of weak scaling, both the number of processors and the problem size are
increased. This also results in a constant workload per processor. Weak scaling is mostly
used for large memory-bound applications where the required memory cannot be
satisfied by a single node.
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?/A\$ Weak scaling: average iterations

5 An example at scale
T

o / mbe= AlyaDefCG
1o — | MLVSMATCH4

Average lterations

|
45 367 2943 23551

Number of MPI cores

A\ To preserve computational time, we run only 20 time steps and average the
measures.
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Weak scaling: total solve time and speedup

5 An example at scale

100 \ T 700 \ T
mhe= AlyaCG whe= AlyaCG

80 MLVSMATCH# MLVSMATFCH
100

60 =

40 . 10 |

20 >

L | ! 1‘1‘ |
45 367 2943 23551 45 367 2943
Number of MPI cores Number of MPI cores

Total solve time Speedup
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?/‘“% Where we would like to go

6 The way forward

We started investigations on
@ Distributed implementation of Sketched-GMRES,

@ Communication-Avoiding Krylov methods.

Always on the lookout for collaborations in
Block-Krylov methods: AX = B;

in
#4 Linear matrix-equations: AX + XB = UV ';
#\ Matrix-function vector products: y = f(A)v.
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U,

Krylov: better, faster, parallel thank you for

listening!
Any questions?



3D Poisson benchmark - solvers
7 GPU Example

Solvers from PSCToolkit

VBM decoupled Vanék, Mandel, Brezina aggregation, V-cycle, £1-Jacobi smoother
(4 sweeps), at most 40 iterations of the Preconditioned CG coupled to
¢1-)acobi preconditioner as coarsest solver;

SMATCH matching-based aggregation with aggregates of maximum size equal to 8,
smoothing of prolongators, further algorithmic choices as in VBM;

VMATCH matching-based aggregation as in SMATCH, un-smoothed prolongators,
Variable V-cycle', further algorithmic choices as in VBM.

'2 smoother iteration at the first level, and doubled at each following level.



3D Poisson benchmark - solvers
7 GPU Example

Solvers from NVIDIA

AMGX CLASSICAL coarsening done by classical, also known as Ruge-Stiiben, AMG
approach, where the coarse nodes are a subset of the fine nodes and a
distance-2 interpolation is applied, V-cycle, smoother ¢;-Jacobi (4 sweeps),
£1-Jacobi (40 sweeps) coarsest solver;

AMGX AGGREGATION aggregation by iterative parallel graph matching, aggregates of
maximum size equal to 8, further algorithmic choices as in AMGX
CLASSICAL.

Solver details:
e FCG with relative tolerance on the residual of 7 = 1079,
e Weak-scaling with 8 x 10° unknowns per GPU, i.e., 3.2 x 107 unknowns per node

© The largest system we consider has ~ 6.5 x 1010 degrees of freedom.



3D Poisson benchmark - Comparison with AMGx
7 GPU Example

/

) =@ VBM
10 @ a g " SMATCH
- o’ o > VMATCH
mgmm AMGX-AGGR.
. 0 ,’ mpmm AMGX-CLAS.
* 0 .2
T t i

NN D ) b B b ol \O(I’D‘Q,Ob‘%b(oqbq,'\qq/

Iterations
]
4
0

Q

Iteration count



3D Poisson benchmark - Comparison with AMGx
7 GPU Example
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3D Poisson benchmark - Comparison with AMGx
7 GPU Example
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High Performance Scientific
Computing @ UNIPI

8 New Ph.D. Program in HPSC

4 Call for 4 Ph.D. position @ UNIPI

1 Position financed by IAC-CNR on Parallel Linear
Algebra,

2 Positions financed by S.I.T. — Sordina IORT
Technologies S.p.A on Computational Methods
and Models for Flash Radiotherapy,

1 Position on the development and use of HPC for
electronic devices based on advanced and
innovative materials.

@8 Call closes on July 18th - 13:00 CEST
& www.dm.unipi.it/phd-hpsc/
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