
Krylov: better, faster, parallel
The 26th Conference of the International Linear Algebra Society
MS23: Advances in Krylov subspace methods and their application
Fabio Durastante (fabio.durastante@unipi.it)
June 24, Tuesday – 17:00–17:30 @ SC4011

1/28

mailto:fabio.durastante@unipi.it
mailto:fabio.durastante@unipi.it

Collaborators & Funding1 With a Little Help from My Friends

Pasqua D’Ambra,Consiglio Nazionale delle RicercheIstituto per le Applicazioni del Calcolo“M. Picone”

Salvatore Filippone,Università degli Studi di Roma “Tor Vergata”Dipartimento di Ingegneria Civile eIngegneria InformaticaIAC-CNR

HORIZON-EUROHPC-JU-2023-COE-03-01
Agreement ID: 101172493

HORIZON-EUROPEHPC-JU-2023-COE-01
Agreement N.101144014

PASTRAMI - sPline And Solver innovaTions foR
Adaptive isogeoMetric analysIs

2/28

Table of Contents2 Large-Scale Numerical Linear Algebra

▶ Large-Scale Numerical Linear AlgebraThe TOP500 and EuroHPC machines
▶ The Parallel Sparse Computation ToolkitA prototypical use case
▶ Implementing a Krylov methodPreconditioners
▶ An example at scale
▶ The way forward

3/28

Large-Scale Numerical Linear Algebra2 Large-Scale Numerical Linear Algebra
PDE discretization yields extremely large sparse linear systems that are central to scientificsimulation, hence we target 109 ∼ 1012 dofs.
(Scalability: Solvers must handle millions–billions of unknowns; algorithms need toscale efficiently on HPC architectures (multi-core CPUs, GPUs, clusters), i.e.,thousands/hundred of thousands computing units
L Computational Cost: Direct solvers have prohibitive time/memory costs at largescales; iterative methods (Krylov, multigrid, domain decomposition) are used toreduce cost and exploit sparsity; robust preconditioners and error-control techniquesare needed to ensure convergence and accuracy.
á Parallelism: Efficient parallel implementations demand managing communication,load balancing, and heterogeneous resources (MPI, hybrid CPU/GPU).

4/28

The TOP500 and EuroHPC machines2 Large-Scale Numerical Linear Algebra
To solve such large problems we need to employ machines from the TOP500 list

System Description Cores Power (kW)
1 El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8 GHz, AMD Instinct MI300A,Slingshot-11, TOSS 11,039,616 29,581
2 Frontier - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD InstinctMI250X, Slingshot-11, HPE Cray OS 9,066,176 24,607
3 Aurora - HPE Cray EX – Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4 GHz,Intel Data Center GPU Max, Slingshot-11 9,264,128 38,698

...
9 LUMI - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD Instinct MI250X,Slingshot-11 2,752,704 7,107

10 Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6 GHz,NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband 1,824,768 7,494
5/28

The TOP500 and EuroHPC machines2 Large-Scale Numerical Linear Algebra
To solve such large problems we need to employ machines from the TOP500 list

System Description Cores Power (kW)
1 El Capitan - HPE Cray EX255a, AMD 4th Gen EPYC 24C 1.8 GHz, AMD Instinct MI300A,Slingshot-11, TOSS 11,039,616 29,581
2 Frontier - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD InstinctMI250X, Slingshot-11, HPE Cray OS 9,066,176 24,607
3 Aurora - HPE Cray EX – Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4 GHz,Intel Data Center GPU Max, Slingshot-11 9,264,128 38,698

...
9 LUMI - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD Instinct MI250X,Slingshot-11 2,752,704 7,107

10 Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6 GHz,NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband 1,824,768 7,494
5/28

The TOP500 and EuroHPC machines2 Large-Scale Numerical Linear Algebra
To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

System Description Cores Power (kW)
4 JUPITER Booster - BullSequana XH3000, GH Superchip 72C 3GHz, NVIDIA GH200 Super-chip, Quad-Rail NVIDIA InfiniBand NDR200 4,801,344 13,088
9 LUMI - HPE Cray EX235a, AMD Optimized 3rd Gen EPYC 64C 2 GHz, AMD Instinct MI250X,Slingshot-11 2,752,704 7,107

10 Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6 GHz, NVIDIA A100 SXM464 GB, Quad-rail NVIDIA HDR100 Infiniband 1,824,768 7,494
14 MareNostrum 5 ACC - BullSequana XH3000, Xeon Platinum 8460Y+ 32C 2.3GHz, NVIDIAH100 64GB, Infiniband NDR 663,040 4,158.90
45 MareNostrum 5 GPP - ThinkSystem SD650 v3, Xeon Platinum 8480+ 56C 2GHz, InfinibandNDR200 725,760 5,752.90

5/28

The TOP500 and EuroHPC machines2 Large-Scale Numerical Linear Algebra
To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

System Description Cores Power (kW)
136 MeluXina - Accelerator Module - BullSequana XH2000, AMD EPYC 7452 32C 2.35GHz,NVIDIA A100 40GB, Mellanox HDR InfiniBand 99,200 N/A
195 Karolina, GPU partition - Apollo 6500, AMD EPYC 7452 32C 2.35GHz, NVIDIA A100 SXM440 GB, Infiniband HDR200 64,960 297.26
258 Discoverer - BullSequana XH2000, AMD EPYC 7H12 64C 2.6GHz, Mellanox HDR InfiniBand 144,384 N/A
259 JEDI - BullSequana XH3000, Grace Hopper Superchip 72C 3GHz, NVIDIA GH200 Super-chip, Quad-Rail NVIDIA InfiniBand NDR200, ParTec/EVIDEN 19,584 67
297 Deucalion - PRIMEHPC FX700, Fujitsu A64FX 48C 2GHz, InfiniBand HDR100 78,336 365.21
305 VEGA HPC CPU - BullSequana XH2000, AMD EPYC 7H12 64C 2.6GHz, Mellanox InfiniBandHDR100 122,880 N/A

5/28

The TOP500 and EuroHPC machines2 Large-Scale Numerical Linear Algebra
To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

The Accelerators The Leonardo Machine The Programming Tools

(Probably) you want to focus more on the problem you wish to solve and on the
algorithmic aspects.

5/28

The TOP500 and EuroHPC machines2 Large-Scale Numerical Linear Algebra
To solve such large problems we need to employ machines from the TOP500 list, and for EU
researchers the ones that are accessible through the EuroHPC consortium.

The Accelerators The Leonardo Machine The Programming Tools
(Probably) you want to focus more on the problem you wish to solve and on the

algorithmic aspects.
5/28

Table of Contents3 The Parallel Sparse Computation Toolkit

▶ Large-Scale Numerical Linear AlgebraThe TOP500 and EuroHPC machines
▶ The Parallel Sparse Computation ToolkitA prototypical use case
▶ Implementing a Krylov methodPreconditioners
▶ An example at scale
▶ The way forward

6/28

Parallel Sparse Computation Toolkit – psctoolkit.github.io3 The Parallel Sparse Computation Toolkit
Two central libraries PSBLAS and AMG4PSBLAS:

• Existing software standards:
— MPI, OpenMP, CUDA— Serial sparse BLAS, — (Par)Metis,— AMD

• Attention to performance using modern Fortran;
• Research on new preconditioners;
• No need to delve in the data structures for the user;
• Tools for error and mesh handling beyond simple algebraicoperations;
• Distributed Sparse BLAS;
• Standard Krylov solvers: CG, FCG, (R)GMRES, BiCGStab, CGS, . . .

7/28

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io3 The Parallel Sparse Computation Toolkit
Two central libraries PSBLAS and AMG4PSBLAS:

• Domain decomposition preconditioners
• Algebraic MultiGrid with aggregation schemes

— Vaněk, Mandel, Brezina— Matching Based Aggregation— Smoothed Aggregation
• Parallel Smoothers (Block-Jacobi, Hybrid-GS/SGS/FBGS, ℓ1variants) that can be coupled with specialized block(approximate) solvers MUMPS, SuperLU, IncompleteFactorizations (AINV, INVK/L, ILU-type), and with PolynomialAccelerators (Chebyshev 1st-kind, Chebyshev 4th-kind)
• V-Cycle, W-Cycle, K-Cycle

7/28

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io3 The Parallel Sparse Computation Toolkit
Two central libraries PSBLAS and AMG4PSBLAS.
§ Freely available from: https://psctoolkit.github.io,
ò Open Source with BSD 3 Clause License,
g Soon to be released/interfaced with the Alya multi-physicssolver, and the ParFlow solver, KINSOL non-linear solvers,Deal.II FEM library.

These are collaborations with:

� Can be compiled/installed with either Automake/CMake or
Spack.io: “spack install psblas”.

7/28

psctoolkit.github.io
https://psctoolkit.github.io

But how does it work?3 The Parallel Sparse Computation Toolkit
á You start a parallel environment—if you are familiar with MPI, an MPI

communicator,
type(psb_ctxt_type) :: ctxt

integer(psb_ipk_) :: iam, np, nth

call psb_init(ctxt)

call psb_info(ctxt,iam,np)

« Build a partitioned index space, each process has an arbitrary subset of the global
index space

� Allocate a sparse matrix to be filled with entries computed from your favorite
discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

å Assemble everything: and you are ready to perform your solution tasks.
� Solve a linear system, use Distributed BLAS operations, etc.

8/28

But how does it work?3 The Parallel Sparse Computation Toolkit
á You start a parallel environment—if you are familiar with MPI, an MPI

communicator,
« Build a partitioned index space, each process has an arbitrary subset of the global

index space:

1 2

3

4 5

6

Build a descriptor type(psb_desc_type):: descand init it with global indexes.On process 0:
vl = [1,2,3]

call psb_cdall(ctxt, desc, info, vl=vl)

On process 1:
vl = [4,5,6]

call psb_cdall(ctxt, desc, info, vl=vl)

� You can do this with any graph partitioner: Metis, ParMetis, Zoltan, . . .

� Allocate a sparse matrix to be filled with entries computed from your favorite
discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

å Assemble everything: and you are ready to perform your solution tasks.
� Solve a linear system, use Distributed BLAS operations, etc.

8/28

But how does it work?3 The Parallel Sparse Computation Toolkit
á You start a parallel environment—if you are familiar with MPI, an MPI

communicator,
« Build a partitioned index space, each process has an arbitrary subset of the global

index space,
� Allocate a sparse matrix to be filled with entries computed from your favorite

discretization scheme
type(psb_dspmat_type) :: a

call psb_spall(a,desc,info,nnz=nnz)

Fill the matrix with the entries using only global indexes in coordinate format:
call psb_spins(num_of_coeffs,irow,icol,val,a,desc,info)The procedure for vectors is analogous psb_geall()/psb_geins().

å Assemble everything: and you are ready to perform your solution tasks.
� Solve a linear system, use Distributed BLAS operations, etc.

8/28

But how does it work?3 The Parallel Sparse Computation Toolkit
á You start a parallel environment—if you are familiar with MPI, an MPI

communicator,
« Build a partitioned index space, each process has an arbitrary subset of the global

index space,
� Allocate a sparse matrix to be filled with entries computed from your favorite

discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

å Assemble everything:
call psb_cdasb(desc,info)

call psb_spasb(a,desc,info,afmt='CSR') ! or many other formats

and you are ready to perform your solution tasks.

� Solve a linear system, use Distributed BLAS operations, etc.

8/28

But how does it work?3 The Parallel Sparse Computation Toolkit
á You start a parallel environment—if you are familiar with MPI, an MPI

communicator,
« Build a partitioned index space, each process has an arbitrary subset of the global

index space,
� Allocate a sparse matrix to be filled with entries computed from your favorite

discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

å Assemble everything:
type(psb_d_hlg_sparse_mat) :: gpu_mold

call psb_cdasb(desc,info)

call psb_spasb(a,desc,info,mold=gpu_mold) ! even on the GPUand you are ready to perform your solution tasks.

� Solve a linear system, use Distributed BLAS operations, etc.

8/28

But how does it work?3 The Parallel Sparse Computation Toolkit
á You start a parallel environment—if you are familiar with MPI, an MPI

communicator,
« Build a partitioned index space, each process has an arbitrary subset of the global

index space,
� Allocate a sparse matrix to be filled with entries computed from your favorite

discretization scheme The procedure for vectors is analogous
psb_geall()/psb_geins().

å Assemble everything:
type(psb_d_hlg_sparse_mat) :: gpu_mold

call psb_cdasb(desc,info)

call psb_spasb(a,desc,info,mold=gpu_mold) ! even on the GPUand you are ready to perform your solution tasks.
� Solve a linear system, use Distributed BLAS operations, etc.

8/28

Table of Contents4 Implementing a Krylov method

▶ Large-Scale Numerical Linear AlgebraThe TOP500 and EuroHPC machines
▶ The Parallel Sparse Computation ToolkitA prototypical use case
▶ Implementing a Krylov methodPreconditioners
▶ An example at scale
▶ The way forward

9/28

Implementing a Krylov method4 Implementing a Krylov method
å The whole infrastructure allows to implement Krylov methods in a simple way:

 Write down the implementation in terms of BLAS-like operations,
Ð Transform them into the corresponding PSBLAS calls.

To look at a few examples:
Op BLAS PSBLAS

α = x⊤y alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc ⌋

,info)

y = αAx + βy dgemv('N',n,n,alpha,A,n,x, ⌋

1,beta,y,1)

psb_spmm(alpha,A,x,beta,y, ⌋

desc,info)

y = αx + βy y = beta*y

daxpy(n, alpha, x, 1, ⌋

y, 1)

psb_geaxpby(alpha,x,beta,y ⌋

,desc,info)

∥x∥2 dnrm2(n,x,1) psb_genrm2(x,desc,info)

10/28

Implementing a Krylov method4 Implementing a Krylov method
å The whole infrastructure allows to implement Krylov methods in a simple way:

 Write down the implementation in terms of BLAS-like operations,
Ð Transform them into the corresponding PSBLAS calls.To look at a few examples:

Op BLAS PSBLAS

α = x⊤y alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc ⌋

,info)

y = αAx + βy dgemv('N',n,n,alpha,A,n,x, ⌋

1,beta,y,1)

psb_spmm(alpha,A,x,beta,y, ⌋

desc,info)

y = αx + βy y = beta*y

daxpy(n, alpha, x, 1, ⌋

y, 1)

psb_geaxpby(alpha,x,beta,y ⌋

,desc,info)

∥x∥2 dnrm2(n,x,1) psb_genrm2(x,desc,info)

10/28

Implementing a Krylov method4 Implementing a Krylov method
å The whole infrastructure allows to implement Krylov methods in a simple way:

 Write down the implementation in terms of BLAS-like operations,
Ð Transform them into the corresponding PSBLAS calls.To look at a few examples:

Op BLAS PSBLAS
α = x⊤y alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc ⌋

,info)

y = αAx + βy dgemv('N',n,n,alpha,A,n,x, ⌋

1,beta,y,1)

psb_spmm(alpha,A,x,beta,y, ⌋

desc,info)

y = αx + βy y = beta*y

daxpy(n, alpha, x, 1, ⌋

y, 1)

psb_geaxpby(alpha,x,beta,y ⌋

,desc,info)

∥x∥2 dnrm2(n,x,1) psb_genrm2(x,desc,info)

10/28

Implementing a Krylov method4 Implementing a Krylov method
å The whole infrastructure allows to implement Krylov methods in a simple way:

 Write down the implementation in terms of BLAS-like operations,
Ð Transform them into the corresponding PSBLAS calls.To look at a few examples:

Op BLAS PSBLAS
α = x⊤y alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc ⌋

,info)

y = αAx + βy dgemv('N',n,n,alpha,A,n,x, ⌋

1,beta,y,1)

psb_spmm(alpha,A,x,beta,y, ⌋

desc,info)

y = αx + βy y = beta*y

daxpy(n, alpha, x, 1, ⌋

y, 1)

psb_geaxpby(alpha,x,beta,y ⌋

,desc,info)

∥x∥2 dnrm2(n,x,1) psb_genrm2(x,desc,info)

10/28

Implementing a Krylov method4 Implementing a Krylov method
å The whole infrastructure allows to implement Krylov methods in a simple way:

 Write down the implementation in terms of BLAS-like operations,
Ð Transform them into the corresponding PSBLAS calls.To look at a few examples:

Op BLAS PSBLAS
α = x⊤y alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc ⌋

,info)

y = αAx + βy dgemv('N',n,n,alpha,A,n,x, ⌋

1,beta,y,1)

psb_spmm(alpha,A,x,beta,y, ⌋

desc,info)

y = αx + βy y = beta*y

daxpy(n, alpha, x, 1, ⌋

y, 1)

psb_geaxpby(alpha,x,beta,y ⌋

,desc,info)

∥x∥2 dnrm2(n,x,1) psb_genrm2(x,desc,info)

10/28

Implementing a Krylov method4 Implementing a Krylov method
å The whole infrastructure allows to implement Krylov methods in a simple way:

 Write down the implementation in terms of BLAS-like operations,
Ð Transform them into the corresponding PSBLAS calls.To look at a few examples:

Op BLAS PSBLAS
α = x⊤y alpha = ddot(n,x,1,y,1) alpha = psb_gedot(x,y,desc ⌋

,info)

y = αAx + βy dgemv('N',n,n,alpha,A,n,x, ⌋

1,beta,y,1)

psb_spmm(alpha,A,x,beta,y, ⌋

desc,info)

y = αx + βy y = beta*y

daxpy(n, alpha, x, 1, ⌋

y, 1)

psb_geaxpby(alpha,x,beta,y ⌋

,desc,info)

∥x∥2 dnrm2(n,x,1) psb_genrm2(x,desc,info)

10/28

An example Conjugate Gradient method4 Implementing a Krylov method
Template CG PSBLAS Implementation
Compute r(0) = b − Ax(0) call psb_geaxpby(one,b,zero,r,desc_a,info)

rho = zero

for i = 1, 2, . . . iterate: do it = 1, itmax

solve Mz(i−1) = r(i−1) call prec%apply(r,z,desc_a,info)

ρi−1 = r(i−1)T
z(i−1) rho_old = rho

rho = psb_gedot(r,z,desc_a,info)

if i = 1 if (it == 1) then

p(1) = z(0) call psb_geaxpby(one,z,zero,p,desc_a,info)

else else

βi−1 = ρi−1/ρi−2 beta = rho/rho_old

p(i) = z(i−1) + βi−1p(i−1) call psb_geaxpby(one,z,beta,p,desc_a,info)

endif endif

q(i) = Ap(i) call psb_spmm(one,A,p,zero,q,desc_a,info)

αi = ρi−1/p(i)T
q(i) sigma = psb_gedot(p,q,desc_a,info)

alpha = rho/sigma

x(i) = x(i−1) + αip
(i) call psb_geaxpby(alpha,p,one,x,desc_a,info)

r(i) = r(i−1) − αiq
(i) call psb_geaxpby(-alpha,q,one,r,desc_a,info)Check convergence:

∥r(i)∥2 ≤ ϵ∥b∥2 rn2 = psb_genrm2(r,desc_a,info)

bn2 = psb_genrm2(b,desc_a,info)

err = rn2/bn2

if (err.lt.eps) exit iterate

end end do iterate

(Since all operations arelibrary operations theseare offloaded to GPU if
the format is right.

Ð The library uses astate-pattern design, ifyou implement adifferent sparse matrixformat, this coderemains identical.
- You should implementit also with some error

check using the contentof the info variable.
11/28

Preconditioners4 Implementing a Krylov method

To reach convergence Krylov methods also need preconditioners, i,e., we want to solvethe preconditioned system:
B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:
Algorithmic scalability maxi λi(B−1A) ≈ 1 being independent of n,
Linear complexity the action of B−1 costs as little as possible, the best being O(n) flops,
Implementation scalability in a massively parallel computer, B−1 should be composed oflocal actions, performance should depend linearly on the number ofprocessors employed.

12/28

Algebraic Multigrid Algorithms4 Implementing a Krylov method
Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to precondition the CG/FCGmethod:
• Hierarchy of systems

Alx=bl, l = 0, . . . , nlev
• Transfer operators:

Pl
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos
Smoother: “High frequencies”

Ml : Rnl → Rnl

Prolongator: “Low frequencies”

Pl
l+1 : Rnl → Rnl+1

Complementarity of Smoother and Prolongator13/28

What is our recipe?4 Implementing a Krylov method

• The smoother M is a standard iterative solver with good parallel properties, e.g.,
ℓ1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc., possibly with a polynomial
accelerator,

• The prolongator P is built by dofs aggregation based on matching in the weighted(adjacency) graph of A or by decoupled Vaněk, Mandel and Brezina smoothedaggregation.
• The coarse solver when a large number of processes is used is again a preconditioned
Krylov method, otherwise a distributed direct solver (e.g., MUMPS, SuperLU dist).

14/28

What is our recipe?4 Implementing a Krylov method

• The smoother M is a standard iterative solver with good parallel properties, e.g.,
ℓ1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc., possibly with a polynomial
accelerator,

• The prolongator P is built by dofs aggregation based on matching in the weighted(adjacency) graph of A or by decoupled Vaněk, Mandel and Brezina smoothedaggregation.

• The coarse solver when a large number of processes is used is again a preconditioned
Krylov method, otherwise a distributed direct solver (e.g., MUMPS, SuperLU dist).

14/28

What is our recipe?4 Implementing a Krylov method

• The smoother M is a standard iterative solver with good parallel properties, e.g.,
ℓ1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc., possibly with a polynomial
accelerator,

• The prolongator P is built by dofs aggregation based on matching in the weighted(adjacency) graph of A or by decoupled Vaněk, Mandel and Brezina smoothedaggregation.
• The coarse solver when a large number of processes is used is again a preconditioned
Krylov method, otherwise a distributed direct solver (e.g., MUMPS, SuperLU dist).

14/28

What is our recipe?4 Implementing a Krylov method
• The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT, where D = diag(A) and L = tril(A) isintrinsically sequential!HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each processthe method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LT
pp for Dpp = diag(App) and Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUapplication!POLY Polynomial accelerators, classical and modified polynomial acceleration for stationaryiterative methods to accelerate convergence ⇒ suitable for GPU application!

14/28

What is our recipe?4 Implementing a Krylov method
• The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT, where D = diag(A) and L = tril(A) isintrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each processthe method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LT
pp for Dpp = diag(App) and Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUapplication!POLY Polynomial accelerators, classical and modified polynomial acceleration for stationaryiterative methods to accelerate convergence ⇒ suitable for GPU application!

14/28

What is our recipe?4 Implementing a Krylov method
• The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT, where D = diag(A) and L = tril(A) isintrinsically sequential!HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each processthe method acts as the GS method.

ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize
App = Lpp + Dpp + LT

pp for Dpp = diag(App) and Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUapplication!POLY Polynomial accelerators, classical and modified polynomial acceleration for stationaryiterative methods to accelerate convergence ⇒ suitable for GPU application!

14/28

What is our recipe?4 Implementing a Krylov method
• The smoother M is an iterative solver with good parallel properties:GS A = M − N, with M = L + D and N = −LT, where D = diag(A) and L = tril(A) isintrinsically sequential!HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each processthe method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LT
pp for Dpp = diag(App) and Lpp = trilu(App) and select:

Mℓ1−HGS =diag((Mℓ1−HGS)p)p=1,...np ,

(Mℓ1−HGS)p =Lpp + Dpp + Dℓ1p,

(dℓ1)
nb
i=1 =

∑
j∈Ωnb

p

|aij|.

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUapplication!POLY Polynomial accelerators, classical and modified polynomial acceleration for stationaryiterative methods to accelerate convergence ⇒ suitable for GPU application!

14/28

What is our recipe?4 Implementing a Krylov method
• The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT, where D = diag(A) and L = tril(A) isintrinsically sequential!HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each processthe method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LT
pp for Dpp = diag(App) and Lpp = trilu(App) and select:

Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np ,

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUapplication!

POLY Polynomial accelerators, classical and modified polynomial acceleration for stationaryiterative methods to accelerate convergence ⇒ suitable for GPU application!

14/28

What is our recipe?4 Implementing a Krylov method
• The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT, where D = diag(A) and L = tril(A) isintrinsically sequential!HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each processthe method acts as the GS method.
ℓ1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize

App = Lpp + Dpp + LT
pp for Dpp = diag(App) and Lpp = trilu(App) and select:

Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np ,

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUapplication!POLY Polynomial accelerators, classical and modified polynomial acceleration for stationaryiterative methods to accelerate convergence ⇒ suitable for GPU application!
14/28

What is our recipe?4 Implementing a Krylov method

• The prolongator P is built by dofs aggregation based on matching in the weighted(adjacency) graph of A.

14/28

What is our recipe?4 Implementing a Krylov method
• The prolongator P is built by dofs aggregation based on matching in the weighted(adjacency) graph of A.Given w ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a complementaryprolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf

w ∈ Range(P): coarse space Range(Pf): complementary space
[P, Pf]

TA[P, Pf] =

(
PTAP PTAPf

PT
f AP PT

f APf

)
=

(
Ac Acf

Afc Af

)
Ac: coarse matrix Af : hierarchical complement

Sufficient condition for efficient coarsening
Af = PT

f APf as well conditioned as possible, i.e.,
Convergence rate of compatible relaxation: ρf = ∥I − M−1

f Af∥Af ≪ 114/28

But how we achieve it?4 Implementing a Krylov method

Weighted graph matching
Given a graph G = (V, E) (with adjacency matrix A), and aweight vector w we consider the weighted version of Gobtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1 −
2ai,jwiwj

ai,iw2
i + aj,jw2

j
,

• a matchingM is a set of pairwise non-adjacent edges,containing no loops;
• a maximum product matching if it maximizes the productof the weights of the edges ei 7→j in it.

We divide the index set into matchedvertexes I =
⋃np

i=1 Gi, with
Gi ∩ Gj = ∅ if i ̸= j, and unmatchedvertexes, i.e., ns singletons Gi.

15/28

But how we achieve it?4 Implementing a Krylov method

Weighted graph matching
Given a graph G = (V, E) (with adjacency matrix A), and aweight vector w we consider the weighted version of Gobtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1 −
2ai,jwiwj

ai,iw2
i + aj,jw2

j
,

• a matchingM is a set of pairwise non-adjacent edges,containing no loops;
• a maximum product matching if it maximizes the productof the weights of the edges ei 7→j in it.

We divide the index set into matchedvertexes I =
⋃np

i=1 Gi, with
Gi ∩ Gj = ∅ if i ̸= j, and unmatchedvertexes, i.e., ns singletons Gi.

15/28

From the matching to the prolongator4 Implementing a Krylov method
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I − BlAl = (I − (Ml)

−TAl)(I − PlBl+1(Pl)
TAl)(I − M−1

l Al) ∀l < nl,

where Al+1 = (Pl)
TAlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobismoother,
• To increase the robustness we can use a non stationary solver as smoother.
� We employ distributed half-approximate matching algorithms to do the construction.

16/28

From the matching to the prolongator4 Implementing a Krylov method
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I − BlAl = (I − (Ml)

−TAl)(I − PlBl+1(Pl)
TAl)(I − M−1

l Al) ∀l < nl,

where Al+1 = (Pl)
TAlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,

• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobismoother,
• To increase the robustness we can use a non stationary solver as smoother.
� We employ distributed half-approximate matching algorithms to do the construction.

16/28

From the matching to the prolongator4 Implementing a Krylov method
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I − BlAl = (I − (Ml)

−TAl)(I − PlBl+1(Pl)
TAl)(I − M−1

l Al) ∀l < nl,

where Al+1 = (Pl)
TAlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobismoother,

Ps
l = (I − ωD−1

l Al)Pl, for Dl = diag(Al).

• To increase the robustness we can use a non stationary solver as smoother.
� We employ distributed half-approximate matching algorithms to do the construction.

16/28

From the matching to the prolongator4 Implementing a Krylov method
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I − BlAl = (I − (Ml)

−TAl)(I − PlBl+1(Pl)
TAl)(I − M−1

l Al) ∀l < nl,

where Al+1 = (Pl)
TAlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobismoother,
• To increase the robustness we can use a non stationary solver as smoother.

� We employ distributed half-approximate matching algorithms to do the construction.

16/28

From the matching to the prolongator4 Implementing a Krylov method
We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the multiplicative composition of
I − BlAl = (I − (Ml)

−TAl)(I − PlBl+1(Pl)
TAl)(I − M−1

l Al) ∀l < nl,

where Al+1 = (Pl)
TAlPl for l = 0, . . . , nl − 1.

• To increase dimension reduction we can perform more than one sweep of matching per step,
• To increase regularity of Pl we can consider a smoothed prolongator by applying a Jacobismoother,
• To increase the robustness we can use a non stationary solver as smoother.
� We employ distributed half-approximate matching algorithms to do the construction.

16/28

How to use them4 Implementing a Krylov method

Using these preconditioners is very simple!
1. You declare the preconditioner: type(amg_dprec_type) :: prec

2. Initialize it, e.g., as a Multigrid Preconditioner:
call prec%init(ctxt,'ML',info)

3. Set all the ingredients you want to use
4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,

. . .) and Smoothers (eventual matrix factorizations)
5. Solve the linear system:
� If the data structures are GPU data structures everything will run on the GPU.

17/28

How to use them4 Implementing a Krylov method
Using these preconditioners is very simple!1. You declare the preconditioner: type(amg_dprec_type) :: prec2. Initialize it, e.g., as a Multigrid Preconditioner:

call prec%init(ctxt,'ML',info)3. Set all the ingredients you want to use
call prec%set('ml_cycle','VCYCLE',info)

call prec%set('outer_sweeps',1,info)

call prec%set('par_aggr_alg','COUPLED',info)

call prec%set('aggr_type','MATCHBOXP',info)

call prec%set('aggr_prol','SMOOTHED',info)

call prec%set('aggr_size',8, info)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
. . .) and Smoothers (eventual matrix factorizations)5. Solve the linear system:

� If the data structures are GPU data structures everything will run on the GPU.

17/28

How to use them4 Implementing a Krylov method
Using these preconditioners is very simple!1. You declare the preconditioner: type(amg_dprec_type) :: prec2. Initialize it, e.g., as a Multigrid Preconditioner:

call prec%init(ctxt,'ML',info)3. Set all the ingredients you want to use
call prec%set('smoother_type','L1-JACOBI',info)

call prec%set('smoother_sweeps',4,info)

call prec%set('coarse_solve','MUMPS',info)

call prec%set('coarse_mat','DIST',info)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
. . .) and Smoothers (eventual matrix factorizations)5. Solve the linear system:

� If the data structures are GPU data structures everything will run on the GPU.

17/28

How to use them4 Implementing a Krylov method
Using these preconditioners is very simple!

1. You declare the preconditioner: type(amg_dprec_type) :: prec

2. Initialize it, e.g., as a Multigrid Preconditioner:
call prec%init(ctxt,'ML',info)

3. Set all the ingredients you want to use call prec%set(...)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
. . .) and Smoothers (eventual matrix factorizations)
call prec%hierarchy_build(a,desc,info)

call prec%smoothers_build(a,desc,info)

5. Solve the linear system:
� If the data structures are GPU data structures everything will run on the GPU.

17/28

How to use them4 Implementing a Krylov method
Using these preconditioners is very simple!

1. You declare the preconditioner: type(amg_dprec_type) :: prec

2. Initialize it, e.g., as a Multigrid Preconditioner:
call prec%init(ctxt,'ML',info)

3. Set all the ingredients you want to use call prec%set(...)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
. . .) and Smoothers (eventual matrix factorizations)

5. Solve the linear system:
call psb_krylov('CG',a,prec,b,x,1.0d-6,desc,info,itmax=30)

� If the data structures are GPU data structures everything will run on the GPU.

17/28

How to use them4 Implementing a Krylov method
Using these preconditioners is very simple!

1. You declare the preconditioner: type(amg_dprec_type) :: prec

2. Initialize it, e.g., as a Multigrid Preconditioner:
call prec%init(ctxt,'ML',info)

3. Set all the ingredients you want to use call prec%set(...)

4. Build the MultiGrid Hierarchy (aggregation, matching, smoothing, coarse matrices,
. . .) and Smoothers (eventual matrix factorizations)

5. Solve the linear system:
call psb_krylov('CG',a,prec,b,x,1.0d-6,desc,info,itmax=30)

� If the data structures are GPU data structures everything will run on the GPU.
17/28

Table of Contents5 An example at scale

▶ Large-Scale Numerical Linear AlgebraThe TOP500 and EuroHPC machines
▶ The Parallel Sparse Computation ToolkitA prototypical use case
▶ Implementing a Krylov methodPreconditioners
▶ An example at scale
▶ The way forward

18/28

Large Eddy Simulation: Wind Simulation5 An example at scale

Bolund is an isolated hill situated in Roskilde
Fjord, Denmark. An almost vertical
escarpment in the prevailing W-SW sector
ensures flow separation in the windward
edge resulting in a complex flow field.

• Model: 3D incompressible unsteady Navier-Stokesequations for the Large Eddy Simulations ofturbulent flows,
• Discretization: low-dissipation mixed FEM (linearFEM both for velocity and pressure) on an hybrid

unstructured meshes, which can includetetrahedra, prisms, hexahedra, and pyramids,
• Time-Stepping: non-incremental fractional-step forpressure, explicit fourth order Runge-Kutta methodfor velocity.
@ Full details are available in the paper:

Owen, H., Lehmkuhl, O., D’Ambra, P., D., F., & Filippone,S. (2024). Alya toward exascale: algorithmic scalability
using PSCToolkit. J. Supercomput., 80(10), 13533–13556.19/28

Large Eddy Simulation: Wind Simulation5 An example at scale

An example of solution we obtain withthis configuration.

• Model: 3D incompressible unsteady Navier-Stokesequations for the Large Eddy Simulations ofturbulent flows,
• Discretization: low-dissipation mixed FEM (linearFEM both for velocity and pressure) on an hybrid

unstructured meshes, which can includetetrahedra, prisms, hexahedra, and pyramids,
• Time-Stepping: non-incremental fractional-step forpressure, explicit fourth order Runge-Kutta methodfor velocity.
@ Full details are available in the paper:

Owen, H., Lehmkuhl, O., D’Ambra, P., D., F., & Filippone,S. (2024). Alya toward exascale: algorithmic scalability
using PSCToolkit. J. Supercomput., 80(10), 13533–13556.19/28

Preconditioner and solver setup5 An example at scale
Pre-smoother 4 iterations of hybrid forward Gauss–Seidel
Post-smoother 4 iterations of hybrid backward Gauss–Seidel
Coarsest solver FCG preconditioned by block-Jacobi with ILU(1) block solvers
Cycle V-cycle
Aggregation Coupled smoothed based on matching Decoupled classic

|G| ≤ 8 |G| ≤ 16 smoothed
Label MLVSMATCH3 MLVSMATCH4 MLVSBM

• FCG with ε = 10−3,
• Initial guess for pressure from the previous time step,
• Reynolds Number: REτ = Uh/ν ≈ 107 with U = 10 m s−1,
• Rossby number RO = 667 ≫ 1 (i.e., no Coriolis force in the horizontal direction).

20/28

Strong scaling results5 An example at scale
We consider strong scaling performance on three grids:Small n1 = 5570786 ≈ 6 × 106 dofs with minp = 48 to maxp = 192 coresMedium n2 = 43619693 ≈ 4.4 × 107 dofs with minp = 384 to maxp = 1536 coresLarge n3 = 345276325 ≈ 0.35 × 109 dofs with minp = 3072 to maxp = 12288 cores
á Run where performed on the Marenostrum-4 supercomputer (machine with 3456nodes with 2 Intel Xeon Platinum 8160 CPUs with 24 cores per CPU) now superseded bythe Marenostrum-5 supercomputer.

Strong Scaling
In case of strong scaling, the number of processors is increased while the problem size
remains constant. This also results in a reduced workload per processor. Strong scaling ismostly used for long-running CPU-bound applications to find a setup which results in areasonable runtime with moderate resource costs.
21/28

Strong scaling results: iteration count5 An example at scale

47 95 191
60

100

700

number of MPI cores

Tota
lIte

rati
ons

Systems size n1

383 767 1535
120160

1042

number of MPI cores

Systems size n2

3071 6143 12287100125

1406

number of MPI cores

Systems size n3

MLVSBM MLVSMATCH3 MLVSMATCH4 AlyaDefCG
22/28

Strong scaling results: total solve time5 An example at scale

47 95 191

10
20

number of MPI cores

Tota
lSo

lve
Tim

e(s
)

Systems size n1

383 767 1535

14

30

number of MPI cores

Systems size n2

3071 6143 1228710

25

50

number of MPI cores

Systems size n3

MLVSBM MLVSMATCH3 MLVSMATCH4 AlyaDefCG
23/28

Weak scaling results5 An example at scale
We consider the same three meshes plus a fourth one with n4 ≈ 2.9 × 109

• The number of dofs per core we consider is: nxcore1 = 1.1 × 105 dofs.
• We run at 45, 367, 2943, 23551 cores with the four meshes.

á Results are obtained on the Juwels supercomputer (2271 compute nodes with 2 IntelXeon Platinum 8168 CPUs, of 24 cores each)
Weak scaling

In case of weak scaling, both the number of processors and the problem size are
increased. This also results in a constant workload per processor. Weak scaling is mostlyused for large memory-bound applications where the required memory cannot besatisfied by a single node.
24/28

Weak scaling: average iterations5 An example at scale

45 367 2943 23551
4

100
300

Number of MPI cores

Ave
rage

Iter
atio

ns
AlyaDefCGMLVSMATCH4

. To preserve computational time, we run only 20 time steps and average the
measures.
25/28

Weak scaling: total solve time and speedup5 An example at scale

45 367 2943 23551
20

40

60

80

100

Number of MPI cores

AlyaCGMLVSMATCH4

45 367 2943 235511

10

100
700

Number of MPI cores

AlyaCGMLVSMATCH4

Total solve time Speedup
26/28

Table of Contents6 The way forward

▶ Large-Scale Numerical Linear AlgebraThe TOP500 and EuroHPC machines
▶ The Parallel Sparse Computation ToolkitA prototypical use case
▶ Implementing a Krylov methodPreconditioners
▶ An example at scale
▶ The way forward

27/28

Where we would like to go6 The way forward

We started investigations on
ß Distributed implementation of Sketched-GMRES,
ß Communication-Avoiding Krylov methods.

Always on the lookout for collaborations in
O Block-Krylov methods: AX = B;

O Linear matrix-equations: AX + XB = UV⊤;

O Matrix-function vector products: y = f (A)v.

28/28

Krylov: better, faster, parallel Thank you for

listening!
Any questions?

3D Poisson benchmark - solvers7 GPU Example

Solvers from PSCToolkit
VBM decoupled Vaněk, Mandel, Brezina aggregation, V-cycle, ℓ1-Jacobi smoother(4 sweeps), at most 40 iterations of the Preconditioned CG coupled to

ℓ1-Jacobi preconditioner as coarsest solver;
SMATCH matching-based aggregation with aggregates of maximum size equal to 8,smoothing of prolongators, further algorithmic choices as in VBM;
VMATCH matching-based aggregation as in SMATCH, un-smoothed prolongators,Variable V-cycle1, further algorithmic choices as in VBM.

12 smoother iteration at the first level, and doubled at each following level.

3D Poisson benchmark - solvers7 GPU Example
Solvers from NVIDIA
AMGX CLASSICAL coarsening done by classical, also known as Ruge-Stüben, AMGapproach, where the coarse nodes are a subset of the fine nodes and adistance-2 interpolation is applied, V-cycle, smoother ℓ1-Jacobi (4 sweeps),

ℓ1-Jacobi (40 sweeps) coarsest solver;
AMGX AGGREGATION aggregation by iterative parallel graph matching, aggregates ofmaximum size equal to 8, further algorithmic choices as in AMGXCLASSICAL.
Solver details:
• FCG with relative tolerance on the residual of τ = 10−6,
• Weak-scaling with 8 × 106 unknowns per GPU, i.e., 3.2 × 107 unknowns per node

- The largest system we consider has ≈ 6.5 × 1010 degrees of freedom.

3D Poisson benchmark - Comparison with AMGx7 GPU Example

1 2 4 8 16 32 64 128 256 512 1024 20484096 8192101

102

Iter
atio

ns VBM
SMATCH
VMATCH
AMGX-AGGR.
AMGX-CLAS.

Iteration count

3D Poisson benchmark - Comparison with AMGx7 GPU Example

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
100

101

Solv
etim

e VBM
SMATCH
VMATCH
AMGX-AGGR.
AMGX-CLAS.

Solve time (s)

3D Poisson benchmark - Comparison with AMGx7 GPU Example

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

10−1

100

Tim
epe

rite
rati

on VBM
SMATCH
VMATCH
AMGX-AGGR.
AMGX-CLAS.

Time per iteration (s)

High Performance Scientific
Computing @ UNIPI8 New Ph.D. Program in HPSC

k Call for 4 Ph.D. position @ UNIPI
1 Position financed by IAC-CNR on Parallel Linear
Algebra,2 Positions financed by S.I.T. — Sordina IORTTechnologies S.p.A on Computational Methods
and Models for Flash Radiotherapy,1 Position on the development and use of HPC for
electronic devices based on advanced andinnovative materials.

z Call closes on July 18th - 13:00 CEST
� www.dm.unipi.it/phd-hpsc/

https://www.dm.unipi.it/phd-hpsc/

	With a Little Help from My Friends
	Large-Scale Numerical Linear Algebra
	The TOP500 and EuroHPC machines

	The Parallel Sparse Computation Toolkit
	A prototypical use case

	Implementing a Krylov method
	Preconditioners

	An example at scale
	The way forward
	Appendix
	GPU Example
	New Ph.D. Program in HPSC

