Algebraic MultiGrid Preconditioners for Sparse Linear Solvers at Extreme Scales on Hybrid Architectures

Salvatore Filippone

Università degli studi di Roma Tor Vergata salvatore.filippone@uniroma2.it Consiglio Nazionale delle Ricerche Istituto per le Applicazioni del Calcolo "M. Picone"

PASC2021

MS: Scalable Solvers for Energy Oriented Scientific Challenges July 7, 2021

Joint work with

Pasqua D'Ambra,

Consiglio Nazionale delle Ricerche Istituto per le Applicazioni del Calcolo "M. Picone"

Fabio Durastante,

Università di Pisa Consiglio Nazionale delle Ricerche Istituto per le Applicazioni del Calcolo "M. Picone"

Funded by

Horizon 2020 European Union funding for Research & Innovation Solve : Ax = b,

where

- $A \in \mathbb{R}^{n \times n}$ is a very large and sparse matrix nnz(A) = O(n),
- $x, b \in \mathbb{R}^n$,

is often the most time consuming computational kernel in many areas of computational science and engineering problems.

Solve : Ax = b,

where

• $A \in \mathbb{R}^{n \times n}$ is a very large and sparse matrix nnz(A) = O(n),

• $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$.

The exascale challenge, using computer that perform 10^{15} Flops, targeting next-gen systems performing 10^{18} Flops to solve problems with tens of billions of unknowns.

I Target Applications

Wind Models

Image credits H. Owen and G. Marin, Barcelona Supercomputing Centre

- Navier-Stokes equations,
- Euler equations,
- Large Eddy Simulations,

Regional Hydrological Models

- Darcy equation,
- Richards' equation,
- Equations for overland flow

DoFs: $n \sim 10^{10}$, Processors(cores): $np \sim 10^6$

Salvatore Filippone (UNITOV)

AMG for Extreme Scale Solvers

	System	Cores	Rmax (TFlops/s)
1	Fugaku	7,630,848	442,010.0
2	Summit	2,414,592	148,600.0
3	Sierra	1,572,480	94,640.0
÷	:	:	
11	Marconi-100	347,776	21,640.0
12	Piz Daint	387,872	21,230.0
:	:	:	:
63	MareNostrum	153,216	6,470.8

MareNostrum IV - BSC

Piz Daint - CSCS

- Machines with thousands of MPI cores,
- Hybrid form of parallelism: MPI, OpenMP, CUDA/OpenCL, ...
- but how we want to solve it?

¹TOP500 list, June 2021 - https://www.top500.org

Salvatore Filippone (UNITOV)

AMG for Extreme Scale Solvers

Three central libraries **PSBLAS**, AMG4PSBLAS and PSBLAS-EXT:

- Existing software standards:
 - MPI, OpenMP, CUDA
 - Serial sparse BLAS,
- Attention to performance;
- Research on new preconditioners;
- Data structures are essential, but design for ease of use;
- Tools for large mesh handling: the essential kernel is halo data exchange;
- Krylov subspace solvers;

AMD

Parallel Sparse Computation Toolkit - psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT: Large mesh handling support

Salvatore Filippone (UNITOV)

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT:

- Domain decomposition preconditioners
- Algebraic multigrid with aggregation schemes
 - Parallel coupled Weighted Matching Based Aggregation
 - Smoothed Aggregation (Vaněk, Mandel, Brezina)
- Parallel Smoothers (Block-Jacobi, Hybrid-GS/SGS/FBGS, l₁ variants) that can be coupled with specialized block (approximate) solvers MUMPS, SuperLU, Incomplete Factorizations (AINV, INVK/L, ILU-type)
- V-Cycle, W-Cycle, K-Cycle

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT:

- GPU Plugin PSBLAS-EXT
- Support for NVIDIA devices;
- Many data storage formats;
- Fully integrated in PSBLAS, MPI enabled;
- Transparent use from PSBLAS/AMG4PSBLAS
- S. Filippone et al., Sparse matrix-vector multiplication on GPGPUs, ACM Trans. Math. Software 43 (2017), no. 4, Art. 30

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT.

• GPU Plugin PSBLAS-EXT

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT

- Freely available from: https://psctoolkit.github.io,
- 👌 Open Source, released under BSD 3 Clause License,
- Interfaced with the Alya multi-physics solver, ParFlow solver, KINSOL non-linear solvers, collaborations with:

Barcelona Supercomputing Center Centro Nacional de Supercomputación

I Algebraic Multigrid Preconditioners

Given Matrix $A \in \mathbb{R}^{n \times n}$ SPD Wanted Iterative method B to precondition the CG method: • Hierarchy of systems $A_l x=b_l, l=0,\ldots,$ nlev

• Transfer operators: $P'_{l+1} : \mathbb{R}^{n_{l+1}} \to \mathbb{R}^{n_l}$

Missing Structural/geometric infos

Salvatore Filippone (UNITOV)

AMG for Extreme Scale Solvers

PASC21: MS: Scalable Solvers for Energy

Solve the preconditioned system:

$$B^{-1}Ax = B^{-1}b,$$

with matrix $B^{-1} \approx A^{-1}$ (left preconditioner) such that:

Algorithmic scalability $\max_i \lambda_i(B^{-1}A) \approx 1$ being independent of n,

Linear complexity the action of B^{-1} costs as little as possible, the best being $\mathcal{O}(n)$ flops,

Implementation scalability in a massively parallel computer, B^{-1} should be composed of local actions, performance should depend linearly on the number of processors employed.

- The smoother M is a standard iterative solver with good parallel properties, e.g., ℓ_1 -Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.
- The prolongator P is built by dofs aggregation based on matching in the weighted (adjacency) graph of A.
- The coarse solver can be (again) a preconditioned CG method.

UWhat is our *recipe*?

• The smoother *M* is an iterative solver with good parallel properties:

GS A = M - N, with M = L + D and $N = -L^T$, where D = diag(A) and L = tril(A) is intrinsically sequential!

- HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process the method acts as the GS method.
- ℓ_1 -HGS On process p = 1, ..., np relative to the index set Ω_p we factorize $A_{pp} = L_{pp} + D_{pp} + L_{pp}^T$ for $D_{pp} = \text{diag}(A_{pp})$ and $L_{pp} = \text{tril}(A_{pp})$ then:

AINV Block-Jacobi with an approximate inverse factorization on the block \Rightarrow suitable for GPUs

UWhat is our *recipe*?

• The prolongator *P* is built by dofs *aggregation based on matching* in the weighted (adjacency) graph of *A*.

Given $w \in \mathbb{R}^n$, let $P \in \mathbb{R}^{n \times n_c}$ and $P_f \in \mathbb{R}^{n \times n_f}$ be a prolongator and a complementary prolongator, such that:

$$\mathbb{R}^n = \operatorname{Range}(P) \oplus^{\perp} \operatorname{Range}(P_f), \quad n = n_c + n_f$$

 $w \in Range(P)$: coarse space

 $Range(P_f)$: complementary space

$$[P, P_f]^T A[P, P_f] = \begin{pmatrix} P^T A P & P^T A P_f \\ P_f^T A P & P_f^T A P_f \end{pmatrix} = \begin{pmatrix} A_c & A_{cf} \\ A_{fc} & A_f \end{pmatrix}$$

 A_c : coarse matrix

A_f: hierarchical complement

Sufficient condition for efficient coarsening

 $A_f = P_f^T A P_f$ as well conditioned as possible, i.e., Convergence rate of *compatible relaxation*: $\rho_f = \|I - M_f^{-1} A_f\|_{A_f} \ll 1$

Weighted graph matching

Given a graph $G = (\mathcal{V}, \mathcal{E})$ (with adjacency matrix A), and a weight vector w we consider the weighted version of G obtained by considering the weight matrix \hat{A} :

$$(\hat{A})_{i,j} = \hat{a}_{i,j} = 1 - \frac{2a_{i,j}w_iw_j}{a_{i,i}w_i^2 + a_{j,j}w_j^2},$$

- a *matching* \mathcal{M} is a set of pairwise non-adjacent edges, containing no loops;
- a maximum product matching if it maximizes the product of the weights of the edges e_{i→j} in it.

Weighted graph matching

Given a graph $G = (\mathcal{V}, \mathcal{E})$ (with adjacency matrix A), and a weight vector w we consider the weighted version of G obtained by considering the weight matrix \hat{A} :

$$(\hat{A})_{i,j} = \hat{a}_{i,j} = 1 - \frac{2a_{i,j}w_iw_j}{a_{i,i}w_i^2 + a_{j,j}w_j^2},$$

- a matching M is a set of pairwise non-adjacent edges, containing no loops;
- a maximum product matching if it maximizes the product of the weights of the edges e_{i→j} in it.

We divide the index set into matched vertices $\mathcal{I} = \bigcup_{i=1}^{n_p} \mathcal{G}_i$, with $\mathcal{G}_i \cap \mathcal{G}_j = \emptyset$ if $i \neq j$, and unmatched vertices, i.e., n_s singletons \mathcal{G}_i .

Parallel Matching Algorithms

- What is the best matching algorithm from a computational point of view?
- How can we evaluate the quality (in term of the AMG algorithm) of the resulting matching?

With the formalism from (Xu and ² Zikatanov, 2017) and using a technique ³ from (Napov and Notay, 2011) we associate a quality measure of the aggregates in terms of the convergence properties of the whole AMG method! Better aggregates give better convergence properties.

Algorithm: Locally Dominant Edge

Input: Graph $G = (\mathcal{V}, \mathcal{E})$, Weights \hat{A} $\mathcal{M} \leftarrow \emptyset$;

while
$$\mathcal{E} \neq \emptyset$$
 do

Take a locally dominant edge $(i, j) \in \mathcal{E}$, i.e., such that

$$\arg\max_k \hat{a}_{ik} = \arg\max_k \hat{a}_{jk} = \hat{a}_{ij}$$

Add $(i, j) \in \mathcal{M}$; Remove all edges incident to i and jfrom \mathcal{E} ;

6 end

 $\textbf{Output:} \ \mathsf{Matching} \ \mathcal{M}$

5

IJ Weak Scalability - CPU/GPU Runs - Piz Daint

- 🖒 Run on the Piz Daint machine up to 28800 cores
- C Test: 3D Constant coefficient Poisson Problem with FCG
- rightarrow DoF: 256k/512k/1M unknowns \times MPI core
- ▼ Measure: Solve Time (s).

Scaling

There are two common notions of scalability:

- Strong scaling analysis studies as how the solution time varies with the number of processors for a fixed total problem size.
- Weak scaling analysis studies as how the solution time varies with the number of processors for a fixed problem size per processor.
- P. D'Ambra, F. Durastante and S. Filippone,AMG preconditioners for Linear Solvers towards Extreme Scale. arXiv preprint (2020), arXiv:2006.16147, to appear in SIAM J. Sci. Comp. 2021

U Weak Scalability - CPU/GPU Runs - Piz Daint

Execution Time for Solve (s) - K-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

Weak Scalability - CPU/GPU Runs - Piz Daint

Execution Time for Solve (s) - VS-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

I A CFD application inside Alya

Joint work with Herbert Owen Barcelona Super Computing Center

Bolund is an isolated hill situated in Roskilde Fjord, Denmark. An almost vertical escarpment in the prevailing

W-SW sector ensures flow separation in the windward edge resulting in a complex flow field.

- Model: 3D incompressible unsteady Navier-Stokes equations for the Large Eddy Simulations of turbulent flows,
- **Discretization**: low-dissipation mixed FEM (linear FEM both for velocity and pressure),
- **Time-Stepping**: non-incremental fractional-step for pressure, explicit fourth order Runge-Kutta method for velocity.

• Total number of linear iterations is smaller and stable for increasing number of cores,

Bolund Test Case - Strong Scaling - Pressure Equation

- The time needed per each iteration decreases for increasing number of cores,
- The trade-off between cost-per-iteration and number of iterations advantages the AMG preconditioners!

I Conclusions and Future Directions

We have proved

- ✓ Aggregation procedure with certified quality,
- ✓ Scalability results on tens of thousands of cores,
- ✓ Comparable results with state of the art libraries,
- ✓ Interfacing with large scale scientific applications,
- ✓ Multi-GPU support.

Algorithmic and software extensions to AMG4PSBLAS (future work)

Multi-objective matching to increase coarsening ratio,

- Collaboration with Pacific Northwest National Laboratory (Richland, WA), and Purdue University (IN)
- Process remapping for coarse grid solutions,

📽 Collaboration with Centre national de la recherche scientifique (Toulouse)

- GPU data and preconditioner setup improvements,
- Communication avoiding Krylov methods,
- Mixed-precision arithmetic.

👤 Essential bibliography

Multigrid based on matching

- P. D'Ambra and P. S. Vassilevski, Adaptive AMG with coarsening based on compatible weighted matching, Comput. Vis. Sci. 16 (2013), no. 2, 59–76.
- P. D'Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for bootstrap AMG based on graph weighted matching, ACM Trans. Math. Software 44 (2018), no. 4, Art. 39, 25 pp.
- M. Bernaschi, P. D'Ambra and D. Pasquini, AMG based on compatible weighted matching for GPUs, Parallel Comput. 92 (2020), 102599, 13 pp.
- P. D'Ambra, F. Durastante and S. Filippone, On the quality of matching-based aggregates for algebraic coarsening of SPD matrices in AMG. arXiv preprint (2020), arXiv:2001.09969.
- Scalability results
 - P. D'Ambra, F. Durastante and S. Filippone, AMG preconditioners for Linear Solvers towards Extreme Scale. To appear in Siam J. Sci. Comput (2021). arXiv preprint, arXiv:2006.16147.
- PSBLAS
 - S. Filippone and A. Buttari, Object-oriented techniques for sparse matrix computations in Fortran 2003. ACM Trans. Math. Software 38 (2012), no. 4, 1–20 pp.
 - S. Filippone et al., Sparse matrix-vector multiplication on GPGPUs, ACM Trans. Math. Software 43 (2017), no. 4, Art. 30, 49 pp.

Thank You!

Convergence Theorem (D'Ambra, Durastante, Filippone)

The exact TL-AMG with convergent smoother M, and prolongator P based on the maximum weight matching applied on a SPD matrix A has a convergence rate of

$$\|I - B^{-1}A\|_{A} \le 1 - \frac{\mu_{c}}{c^{D}}, \text{ for } \mu_{c} = \min_{1 \le j \le J} \mu_{j}(V_{j}^{c}) = \min_{1 \le j \le J} \left[\max_{v_{j} \in V_{j}} \min_{v_{j}^{c} \in V_{j}^{c}} \frac{\|v_{j} - v_{j}^{c}\|_{D_{j}}^{2}}{\|v_{j}\|_{A_{j}}^{2}} \right].$$

and c^D the continuity constant of the smoother. Moreover, the $\mu_i^{-1}(V_j^c)$ are such that

$$\lambda_2^{-1}(D_j^{-1}A_j) \leq \mu_j^{-1}(V_j^c) \leq \lambda_1^{-1}(D_j^{-1}A_j).$$

Furthermore, if either $(\mathsf{w}_{e_{i\to j}}, \lambda_1(D_j^{-1}A_j))$, or $(\mathsf{w}_{e_{i\to j}}^{\perp}, \lambda_2(D_j^{-1}A_j))$ are eigencouples of $D_j^{-1}A_j$, then

$$\mu_j^{-1}(V_j^c) = \lambda_2^{-1}(D_j^{-1}A_j)$$

• The local constants $\mu_j^{-1}(V_j^c)$ are then a quality measure for the single aggregates

We can fix the weight vector w, and evaluate the performance of the matching algorithms.

Theorem (Optimal prolongator)

Let $\{\lambda_j, \Phi_j\}_{j=1}^n$ be the eigenpairs of $\overline{T} = \overline{M}A$ for the symmetrized smoother \overline{M} . Let us also assume that Φ_j are orthogonal w.r.t. $(\cdot, \cdot)_{\overline{M}^{-1}}$. The convergence rate $\|E(P)\|_A$ is minimal for P such that

$$\operatorname{Range}(P) = \operatorname{Range}(P^{opt})$$

where $P^{opt} = \{\Phi_1, \dots, \Phi_{n_c}\}$. In this case,

 $\|E\|_{A}^{2} = 1 - \lambda_{n_{c}+1}$

For our choice of P we know that:

• There exists $h \in \mathbb{R}^{n_c}$ such that Ph = w

A good candidate can be obtained by exploiting the symmetrized smoother \overline{M} to select as a weight vector an ε -smooth algebraic vector, i.e., for a given $\epsilon \in (0, 1)$, v an algebraically ϵ -smooth with respect to A if

 $\|\mathbf{v}\|_A^2 \leq \epsilon \|\mathbf{v}\|_{\overline{M}^{-1}}^2.$