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What we want to solve

Solve : Ax = b,

where

A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),

x, b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of
computational science and engineering problems.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8
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The exascale challenge, using computer that perform 1015 Flops, targeting
next-gen systems performing 1018 Flops to solve problems with tens of
billions of unknowns.
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Target Applications

Wind Models

Image credits H. Owen and G. Marin, Barcelona

Supercomputing Centre

Navier-Stokes equations,

Euler equations,

Large Eddy Simulations,

. . .

Regional Hydrological Models

Darcy equation,

Richards’ equation,

Equations for overland flow

. . .

DoFs: n ∼ 1010, Processors(cores): np ∼ 106
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Where we want to solve it1

System Cores Rmax
(TFlops/s)

1 Fugaku 7,630,848 442,010.0
2 Summit 2,414,592 148,600.0
3 Sierra 1,572,480 94,640.0
...

...
...

...
11 Marconi-100 347,776 21,640.0
12 Piz Daint 387,872 21,230.0
...

...
...

...
63 MareNostrum 153,216 6,470.8

MareNostrum IV - BSC

Piz Daint - CSCS

Machines with thousands of MPI cores,

Hybrid form of parallelism: MPI, OpenMP, CUDA/OpenCL, . . .

but how we want to solve it?

1TOP500 list, June 2021 – https://www.top500.org
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Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and
PSBLAS-EXT:

Existing software standards:

MPI, OpenMP,
CUDA
Serial sparse BLAS,

(Par)Metis,

AMD

Attention to performance;

Research on new preconditioners;

Data structures are essential, but design for ease of use;

Tools for large mesh handling: the essential kernel is
halo data exchange;

Krylov subspace solvers;
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Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and
PSBLAS-EXT: Large mesh handling support

X

Y

Z

⇓
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Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and
PSBLAS-EXT:

Domain decomposition preconditioners

Algebraic multigrid with aggregation schemes

Parallel coupled Weighted Matching Based
Aggregation
Smoothed Aggregation (Vaněk, Mandel, Brezina)

Parallel Smoothers (Block-Jacobi,
Hybrid-GS/SGS/FBGS, `1 variants) that can be
coupled with specialized block (approximate) solvers
MUMPS, SuperLU, Incomplete Factorizations (AINV,
INVK/L, ILU-type)

V-Cycle, W-Cycle, K-Cycle
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Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and
PSBLAS-EXT:

GPU Plugin PSBLAS-EXT

Support for NVIDIA devices;

Many data storage formats;

Fully integrated in PSBLAS, MPI enabled;

Transparent use from PSBLAS/AMG4PSBLAS

q S. Filippone et al., Sparse matrix-vector multiplication on
GPGPUs, ACM Trans. Math. Software 43 (2017), no. 4, Art. 30
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Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and
PSBLAS-EXT.

GPU Plugin PSBLAS-EXT
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Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and
PSBLAS-EXT

� Freely available from:
https://psctoolkit.github.io,

± Open Source, released under BSD 3 Clause License,

K Interfaced with the Alya multi-physics solver, ParFlow
solver, KINSOL non-linear solvers, collaborations with:
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Algebraic Multigrid Preconditioners

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to precondition
the CG method:

Hierarchy of systems

Alx=bl , l = 0, . . . , nlev

Transfer operators:

P l
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother

Ml : Rnl → Rnl

“High frequencies”

Prolongator

P l
l+1 : Rnl → Rnl+1

“Low frequencies”

Complementarity of Smoother and Prolongator
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What are we looking for?

Solve the preconditioned system:

B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi (B
−1A) ≈ 1 being independent of n,

Linear complexity the action of B−1 costs as little as possible, the best being
O(n) flops,

Implementation scalability in a massively parallel computer, B−1 should be
composed of local actions, performance should depend linearly on
the number of processors employed.
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What is our recipe?

The smoother M is a standard iterative solver with good parallel
properties, e.g., `1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method,
etc.

The prolongator P is built by dofs aggregation based on matching in
the weighted (adjacency) graph of A.

The coarse solver can be (again) a preconditioned CG method.
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What is our recipe?

The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and
L = tril(A) is intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the row-block
local to each process the method acts as the GS method.

`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize
App = Lpp + Dpp + LTpp for Dpp = diag(App) and Lpp = tril(App) then:

M`1−HGS = diag((M`1−HGS )p)p=1,...np ,

(M`1−HGS )p =Lpp + Dpp + D`1p ,

(d`1
)nbi=1 =

∑
j∈Ωnb

p

|aij |.
M`1−HGS = diag((M`1−HGS)p)p=1,...np,

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒
suitable for GPUs
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What is our recipe?

The prolongator P is built by dofs aggregation based on matching in
the weighted (adjacency) graph of A.

Given w ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a
complementary prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf ), n = nc + nf

w ∈ Range(P): coarse space Range(Pf ): complementary space

[P,Pf ]TA[P,Pf ] =

(
PTAP PTAPf

PT
f AP PT

f APf

)
=

(
Ac Acf

Afc Af

)
Ac : coarse matrix Af : hierarchical complement

Sufficient condition for efficient coarsening

Af = PT
f APf as well conditioned as possible, i.e.,

Convergence rate of compatible relaxation: ρf = ‖I −M−1
f Af ‖Af

� 1

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers PASC21: MS: Scalable Solvers for Energy 8 / 17



But how we achieve it?

Weighted graph matching

Given a graph G = (V, E) (with adjacency matrix
A), and a weight vector w we consider the weighted
version of G obtained by considering the weight
matrix Â:

(Â)i ,j = âi ,j = 1−
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matchingM is a set of pairwise non-adjacent
edges, containing no loops;

a maximum product matching if it maximizes
the product of the weights of the edges ei 7→j in
it.

We divide the index set into
matched vertices
I =

⋃np
i=1 Gi , with

Gi ∩ Gj = ∅ if i 6= j , and
unmatched vertices, i.e., ns

singletons Gi .

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers PASC21: MS: Scalable Solvers for Energy 9 / 17



But how we achieve it?

Weighted graph matching

Given a graph G = (V, E) (with adjacency matrix
A), and a weight vector w we consider the weighted
version of G obtained by considering the weight
matrix Â:
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Parallel Matching Algorithms

1 What is the best matching algorithm
from a computational point of view?

2 How can we evaluate the quality (in
term of the AMG algorithm) of the
resulting matching?

With the formalism from (Xu and
Zikatanov, 2017) and using a technique
from (Napov and Notay, 2011) we associate
a quality measure of the aggregates in
terms of the convergence properties of the
whole AMG method! Better aggregates give
better convergence properties.

1 Algorithm: Locally Dominant Edge

Input: Graph G = (V, E), Weights Â
2 M← ∅;
3 while E 6= ∅ do
4 Take a locally dominant edge (i , j) ∈ E,

i.e., such that

arg max
k

âik = arg max
k

âjk = âij

Add (i , j) ∈M;
5 Remove all edges incident to i and j

from E;

6 end
Output: Matching M
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Weak Scalability - CPU/GPU Runs - Piz Daint

� Run on the Piz Daint machine up to 28800 cores

� Test: 3D Constant coefficient Poisson Problem with FCG

� DoF: 256k/512k/1M unknowns × MPI core

s Measure: Solve Time (s).

Scaling

There are two common notions of scalability:
Strong scaling analysis studies as how the solution time varies with the
number of processors for a fixed total problem size.

Weak scaling analysis studies as how the solution time varies with the
number of processors for a fixed problem size per processor.

q P. D’Ambra, F. Durastante and S. Filippone,AMG preconditioners for Linear Solvers
towards Extreme Scale. arXiv preprint (2020), arXiv:2006.16147,
to appear in SIAM J. Sci. Comp. 2021
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Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
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1
2

4
8 16

32 64
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256
512

102420484096
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16384
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10242048
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Execution Time for Solve (s) - K-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR
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3072000 dof x GPU

256000 dof x MPI core

512000 dof x MPI core

1024000 dof x MPI core
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A CFD application inside Alya

Joint work with
Herbert Owen

Barcelona Super Computing Center

Bolund is an isolated hill situated in
Roskilde Fjord, Denmark. An almost
vertical escarpment in the prevailing

W-SW sector ensures flow
separation in the windward edge
resulting in a complex flow field.

Model: 3D incompressible unsteady
Navier-Stokes equations for the Large
Eddy Simulations of turbulent flows,

Discretization: low-dissipation mixed
FEM (linear FEM both for velocity and
pressure),

Time-Stepping: non-incremental
fractional-step for pressure, explicit fourth
order Runge-Kutta method for velocity.
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Bolund Test Case - Strong Scaling - Pressure Equation

Total number of linear iterations is smaller and stable for increasing number of
cores,
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Bolund Test Case - Strong Scaling - Pressure Equation

The time needed per each iteration decreases for increasing number of cores,

The trade-off between cost-per-iteration and number of iterations advantages
the AMG preconditioners!
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Conclusions and Future Directions

We have proved

Ë Aggregation procedure with certified quality,

Ë Scalability results on tens of thousands of cores,

Ë Comparable results with state of the art libraries,

Ë Interfacing with large scale scientific applications,

Ë Multi-GPU support.

Algorithmic and software extensions to AMG4PSBLAS (future work)
2 Multi-objective matching to increase coarsening ratio,

� Collaboration with Pacific Northwest National Laboratory (Richland, WA),

and Purdue University (IN)

2 Process remapping for coarse grid solutions,

� Collaboration with Centre national de la recherche scientifique (Toulouse)

2 GPU data and preconditioner setup improvements,

2 Communication avoiding Krylov methods,

2 Mixed-precision arithmetic.
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Thank You!
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Quality and Convergence: a posteriori analysis

Convergence Theorem (D’Ambra, Durastante, Filippone)

The exact TL–AMG with convergent smoother M, and prolongator P based on the
maximum weight matching applied on a SPD matrix A has a convergence rate of

‖I − B−1A‖A ≤ 1− µc

cD
, for µc = min

1≤j≤J
µj(V

c
j ) = min

1≤j≤J

[
max
vj∈Vj

min
vcj ∈V

c
j

‖vj − vc
j ‖2

Dj

‖vj‖2
Aj

]
.

and cD the continuity constant of the smoother. Moreover, the µ−1
j (V c

j ) are such that

λ−1
2 (D−1

j Aj) ≤ µ−1
j (V c

j ) ≤ λ−1
1 (D−1

j Aj).

Furthermore, if either (wei→j , λ1(D−1
j Aj), or (w⊥ei→j

, λ2(D−1
j Aj) are eigencouples of

D−1
j Aj , then

µ−1
j (V c

j ) = λ−1
2 (D−1

j Aj)

The local constants µ−1
j (V c

j ) are then a quality measure for the single
aggregates
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Fixing the parameters

We can fix the weight vector w, and evaluate the
performance of the matching algorithms.

Theorem (Optimal prolongator)

Let {λj ,Φj)
n
j=1 be the eigenpairs of T = MA for the

symmetrized smoother M. Let us also assume that Φj

are orthogonal w.r.t. (·, ·)
M
−1 . The convergence rate

‖E (P)‖A is minimal for P such that

Range(P) = Range(Popt),

where Popt = {Φ1, . . . ,Φnc}. In this case,

‖E‖2
A = 1− λnc+1

For our choice of P we know that:

There exists h ∈ Rnc such that Ph = w

oA good candidate can
be obtained by
exploiting the

symmetrized smoother
M to select as a weight

vector an ε–smooth
algebraic vector, i.e., for
a given ε ∈ (0, 1), v an
algebraically ε-smooth

with respect to A if

‖v‖2
A ≤ ε‖v‖2

M
−1 .
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