
Algebraic MultiGrid Preconditioners for Sparse Linear Solvers at
Extreme Scale

Salvatore Filippone

Università degli studi di Roma Tor Vergata, Dep. Civil and Computer Eng.
Consiglio Nazionale delle Ricerche, Istituto per le Applicazioni del Calcolo “M. Picone”

Cranfield University, School of Aerospace, Transport and Manufacturing
Lawrence Berkeley Laboratory

http://www.ce.uniroma2.it/~sfilippone/ salvatore.filippone@uniroma2.it

Lawrence Berkeley Laboratory
Sep. 2022

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 1 / 34

http://www.ce.uniroma2.it/~sfilippone/
salvatore.filippone@uniroma2.it

Collaborators, funding and acknowledgments

Pasqua D’Ambra,
Consiglio Nazionale delle

Ricerche
Istituto per le Applicazioni del

Calcolo “M. Picone”

Fabio Durastante,
Università di Pisa

CNR
Istituto per le Applicazioni del

Calcolo “M. Picone”

Daniele Bertaccini,
Università di Roma “Tor

Vergata”
CNR

Istituto per le Applicazioni del
Calcolo “M. Picone”

Stefan Kollet,
Jülich Forschungszentrum,

Institute of Bio- and
Geosciences.

Herbert
Owen

Barcelona Super Computing
Center

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 1 / 34

What we want to solve

Solve : Ax = b,

where

A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),

x,b ∈ Rn,

.

is often the most time consuming computational kernel in many areas of computational
science and engineering problems.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 2 / 34

What we want to solve

Solve : Ax = b,

where

A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),

x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

The exascale challenge, using computer that perform 1015 Flops, targeting next-gen systems
performing 1018 Flops to solve problems with tens of billions of unknowns.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 2 / 34

Applications

Wind Models

Image

credits H. Owen and G. Marin, Barcelona Supercomputing

Centre

Navier-Stokes equations,

Euler equations,

Large Eddy Simulations,

. . .

Regional Hydrological Models

Darcy equation,

Richards’ equation,

Equations for overland flow

. . .

DoFs: n ∼ 1010, Processors(cores): np ∼ 106

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 3 / 34

Where we want to solve it

System Cores Rmax (PFlops/s)

1 Frontier 8,730,112 1,102.00
2 Fugaku 7,630,848 442.01
3 Lumi 1,110,144 151.90
4 Summit 2,414,592 148.60
.
21 Marconi-100 347,776 21.64
23 Piz Daint 387,872 21.23
.
82 MareNostrum 153,216 6.47

MareNostrum IV - BSC

Piz Daint - CSCS
Machines with thousands of MPI cores,

Hybrid form of parallelism: MPI, OpenMP, CUDA/OpenCL, . . .

but how do we want to solve it?

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 4 / 34

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT:

Existing software standards:

MPI, OpenMP, CUDA
Serial sparse BLAS,

(Par)Metis,
AMD

Attention to performance;

Research on new preconditioners;

Data structures are essential, but design for ease of use;

Tools for large mesh handling: the essential kernel is halo data exchange;

Krylov subspace solvers;

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 5 / 34

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT: Large
mesh handling support

X

Y

Z

⇓

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 5 / 34

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT:

Domain decomposition preconditioners

Algebraic multigrid with aggregation schemes

Parallel coupled Weighted Matching Based Aggregation
Smoothed Aggregation (Vaněk, Mandel, Brezina)

Parallel Smoothers (Block-Jacobi, Hybrid-GS/SGS/FBGS, `1 variants)
that can be coupled with specialized block (approximate) solvers
MUMPS, SuperLU, Incomplete Factorizations (AINV, INVK/L,
ILU-type)

V-Cycle, W-Cycle, K-Cycle

? P. D’Ambra, F. Durastante, and S. Filippone. “AMG preconditioners for linear

solvers towards extreme scale.” SIAM J. Sci. Comp. 43.5 (2021): S679-S703.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 5 / 34

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT:

GPU Plugin PSBLAS-EXT

Support for NVIDIA devices;

Many data storage formats;

Fully integrated in PSBLAS, MPI enabled;

Transparent use from PSBLAS/AMG4PSBLAS

? S. Filippone et al., Sparse matrix-vector multiplication on GPGPUs, ACM Trans.
Math. Software 43 (2017), no. 4, Art. 30

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 5 / 34

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT.

GPU Plugin PSBLAS-EXT

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 5 / 34

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Three central libraries PSBLAS, AMG4PSBLAS and PSBLAS-EXT

¥ Freely available from: https://psctoolkit.github.io,

ë Open Source, released under BSD 3 Clause License,

Interfaced with the Alya multi-physics solver, ParFlow solver, KINSOL
non-linear solvers, collaborations with: Barcelona Supercomputing
Centre and Jülich Forshungszentrum

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 5 / 34

psctoolkit.github.io
https://psctoolkit.github.io

Algebraic Multigrid Preconditioners

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to precondition the CG method:

Hierarchy of systems

Alx=bl , l = 0, . . . , nlev

Transfer operators:

P l
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother

Ml : Rnl → Rnl

“High frequencies”

Prolongator

P l
l+1 : Rnl → Rnl+1

“Low frequencies”

Complementarity of Smoother and Prolongator

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 6 / 34

What are we looking for?

Solve the preconditioned system:
B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi (B
−1A) ≈ 1 being independent of n,

Linear complexity the action of B−1 costs as little as possible, the best being O(n) flops,

Implementation scalability in a massively parallel computer, B−1 should be composed of local actions,
performance should depend linearly on the number of processors employed.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 7 / 34

What is our recipe?

The smoother M is a standard iterative solver with good parallel properties, e.g.,
`1–Jacobi, Hybrid-FBGS, Hybrid-SGS, CG method, etc.

The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

The coarse solver can be (again) a preconditioned CG method.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 8 / 34

What is our recipe?

The smoother M is an iterative solver with good parallel properties:

GS A = M − N, with M = L + D and N = −LT , where D = diag(A) and L = tril(A) is
intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the row-block local to each process the
method acts as the GS method.

`1-HGS On process p = 1, . . . , np relative to the index set Ωp we factorize App = Lpp + Dpp + LTpp for
Dpp = diag(App) and Lpp = tril(App) then:

M`1−HGS = diag((M`1−HGS)p)p=1,...np ,

(M`1−HGS)p =Lpp + Dpp + D`1p ,

(d`1
)nbi=1 =

∑
j∈Ωnb

p

|aij |.
M`1−HGS = diag((M`1−HGS)p)p=1,...np,

AINV Block-Jacobi with an approximate inverse factorization on the block ⇒ suitable for GPUs

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 8 / 34

What is our recipe?

The prolongator P is built by dofs aggregation based on matching in the weighted
(adjacency) graph of A.

Given w ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator and a complementary
prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf

w ∈ Range(P): coarse space Range(Pf): complementary space

[P,Pf]TA[P,Pf] =

(
PTAP PTAPf

PT
f AP PT

f APf

)
=

(
Ac Acf

Afc Af

)
Ac : coarse matrix Af : hierarchical complement

Sufficient condition for efficient coarsening

Af = PT
f APf as well conditioned as possible, i.e.,

Convergence rate of compatible relaxation: ρf = ‖I −M−1
f Af ‖Af

� 1

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 8 / 34

But how we achieve it?

Weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained
by considering the weight matrix Â:

(Â)i ,j = âi ,j = 1−
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matchingM is a set of pairwise non-adjacent edges,
containing no loops;

a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

We divide the index set into
matched vertices I =

⋃np
i=1 Gi , with

Gi ∩ Gj = ∅ if i 6= j , and unmatched
vertices, i.e., ns singletons Gi .

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 9 / 34

But how we achieve it?

Weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained
by considering the weight matrix Â:

(Â)i ,j = âi ,j = 1−
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matchingM is a set of pairwise non-adjacent edges,
containing no loops;

a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

We divide the index set into
matched vertices I =

⋃np
i=1 Gi , with

Gi ∩ Gj = ∅ if i 6= j , and unmatched
vertices, i.e., ns singletons Gi .

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 9 / 34

Parallel Matching Algorithms

1 What is the best matching algorithm from a
computational point of view?

2 How can we evaluate the quality (in term of the
AMG algorithm) of the resulting matching?

With the formalism from (Xu and Zikatanov, 2017) and
using a technique from (Napov and Notay, 2011) we
associate a quality measure of the aggregates in terms
of the convergence properties of the whole AMG
method! Better aggregates give better convergence
properties.

1 Algorithm: Locally Dominant Edge

Input: Graph G = (V, E), Weights Â
2 M← ∅;
3 while E 6= ∅ do
4 Take a locally dominant edge (i , j) ∈ E, i.e., such

that
arg max

k
âik = arg max

k
âjk = âij

Add (i , j) ∈M;
5 Remove all edges incident to i and j from E;

6 end
Output: Matching MSalvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 10 / 34

Weak Scalability - CPU/GPU Runs - Piz Daint

ª Run on the Piz Daint machine up to 28800 cores

ª Test: 3D Constant coefficient Poisson Problem with FCG

ª DoF: 256k/512k/1M unknowns × MPI core

X Measure: Solve Time (s).

Scaling

There are two common notions of scalability:
Strong scaling analysis studies as how the solution time varies with the number of processors for a
fixed total problem size.

Weak scaling analysis studies as how the solution time varies with the number of processors for a
fixed problem size per processor.

? P. D’Ambra, F. Durastante, and S. Filippone. “AMG preconditioners for linear solvers towards extreme
scale.” SIAM J. Sci. Comp. 43.5 (2021): S679-S703.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 11 / 34

Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
10−1

100

101

1
2

4
8 16

32 64
128

256
512

102420484096

8192

16384

28800

1
2

4

8 16
32 64

128 256 512

10242048

dofs

Execution Time for Solve (s) - K-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

6144000 dof x GPU

3072000 dof x GPU

256000 dof x MPI core

512000 dof x MPI core

1024000 dof x MPI core

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 12 / 34

Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
10−1

100

101

1
2

4 8
16

32
64

128 256
512

1024

2048

4096

8192

16384

28800

1
2

4

8 16
32 64

128 256 512

1024
2048

dofs

Execution Time for Solve (s) - VS-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

6144000 dof x GPU

3072000 dof x GPU

256000 dof x MPI core

512000 dof x MPI core

1024000 dof x MPI core

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 12 / 34

A CFD application inside Alya

Joint work with
Herbert Owen

Barcelona Super Computing Center

Bolund is an isolated hill situated in Roskilde
Fjord, Denmark. An almost vertical

escarpment in the prevailing W-SW sector
ensures flow separation in the windward edge

resulting in a complex flow field.

Model: 3D incompressible unsteady Navier-Stokes
equations for the Large Eddy Simulations of turbulent
flows,

Discretization: low-dissipation mixed FEM (linear
FEM both for velocity and pressure),

Time-Stepping: non-incremental fractional-step for
pressure, explicit fourth order Runge-Kutta method for
velocity.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 13 / 34

Bolund Test Case - Strong Scaling - Pressure Equation

Total number of linear iterations is smaller and stable for increasing number of cores,

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 14 / 34

Bolund Test Case - Strong Scaling - Pressure Equation

The time needed per each iteration decreases for increasing number of cores,

The trade-off between cost-per-iteration and number of iterations advantages the AMG
preconditioners!

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 14 / 34

The Richards Equation as considered in ParFlow

Collaboration with

Richards equation models fluid flow in the unsaturated (vadose) zone, it is

Ñ non-linear the parameters that control the flow are dependent on the saturation of the
media,

Ñ a combination of Darcy’s law and the principle of mass conservation

∂ (ρ φs(p))

∂t
+∇ · q = 0,

Ñ s(p) is the saturation at pressure head p of a fluid with density ρ and terrain porosity φ,

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 15 / 34

The Richards Equation: constitutive equations

Ñ q is the volumetric water flux, using Darcy’s law it is written as

q = −K (p) (∇p + cẑ) ,

Ñ K (p) the hydraulic conductivity,
Ñ c the cosine of the angle between the downward z-axis ẑ and the direction of the gravity force

To complete the model we need equations for both s(p) and K (p), we use the Van Genuchten
formulation [Celia et al. 1990; Van Genuchten, 1980]

s(p) =
α(ss − sr)

α + |p|β
+ sr , and K (p) = Ks

a

a + |p|γ
,

where

Ñ all the parameters (α, β, γ, a) are fitted on real data and assumed to be constant in the
media;

Ñ Ks is the saturated hydraulic conductivity.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 16 / 34

The Richards Equation: constitutive equations

Ñ q is the volumetric water flux, using Darcy’s law it is written as

q = −K (p) (∇p + cẑ) ,

Ñ K (p) the hydraulic conductivity,
Ñ c the cosine of the angle between the downward z-axis ẑ and the direction of the gravity force

To complete the model we need equations for both s(p) and K (p), we use the Van Genuchten
formulation [Celia et al. 1990; Van Genuchten, 1980]

−100 −80 −60 −40 −20 0

0.1

0.15

0.2

0.25

p

s(
p

)

−100 −80 −60 −40 −20 0
0

2

4

6

8

·10−3

p
K

(p
)

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 16 / 34

Cell-centered finite difference discretization

We use a cell-centered finite difference tensor mesh on

Ñ a parallelepiped discretized with N = (Nx ,Ny ,Nz) nodes,
Ñ the cell centers {xi ,j ,k = (ihx , jhy , khz)}N−1

i ,j ,k=0, for h = (hx , hy , hz) = (Lx , Ly , Lz)/(N− 1);

Ñ the relative interfaces located at midpoints between adjacent nodes;
Ñ Nt uniform time steps, i.e., the grid {tl = l∆ t}Nt−1

l=0 for ∆ t = 1/(Nt − 1).

This gives the non-linear equations:

Φ(p
(l)
i,j,k) =

ρφ

∆t

(
s
(
p

(l)
i,j,k

)
− s

(
p

(l−1)
i,j,k

))
+ q

(l)
i+1/2,j,k − q

(l)
i−1/2,j,k + q

(l)
i,j+1/2,k

− q
(l)
i,j−1/2,k + q

(l)
i,j,k+1/2 − q

(l)
i,j,k−1/2 + fi,j,k ≡ 0,

for i , j , k = 1, . . . ,N− 2,

with

q
(l)
i+1/2,j ,k = −

AV
K

(l)
i+1,i

(
p

(l)
i+1,j,k−p

(l)
i,j,k

h2
x

)
, q

(l)
i−1/2,j ,k = −

AV
K

(l)
i−1,i

(
p

(l)
i,j,k−p

(l)
i−1,j,k

h2
x

)
,

q
(l)
i ,j+1/2,k = −

AV
K

(l)
j+1,j

(
p

(l)
i,j+1,k−p

(l)
i,j,k

h2
y

)
, q

(l)
i ,j−1/2,k = −

AV
K

(l)
j−1,j

(
p

(l)
i,j,k−p

(l)
i,j−1,k

h2
y

)
,

q
(l)
i ,j ,k+1/2 = −

AV
K

(l)
k+1,k

(
p

(l)
i,j,k+1−p

(l)
i,j,k

h2
z

)
− K(pi,j,k+1)

2hz
,

q
(l)
i ,j ,k−1/2 = −

AV
K

(l)
k−1,k

(
p

(l)
i,j,k−p

(l)
i,j,k−1

h2
z

)
− K(pi,j,k−1)

2hz
,

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 17 / 34

Cell-centered finite difference discretization

with

q
(l)
i+1/2,j ,k = −

AV
K

(l)
i+1,i

(
p

(l)
i+1,j,k−p

(l)
i,j,k

h2
x

)
, q

(l)
i−1/2,j ,k = −

AV
K

(l)
i−1,i

(
p

(l)
i,j,k−p

(l)
i−1,j,k

h2
x

)
,

q
(l)
i ,j+1/2,k = −

AV
K

(l)
j+1,j

(
p

(l)
i,j+1,k−p

(l)
i,j,k

h2
y

)
, q

(l)
i ,j−1/2,k = −

AV
K

(l)
j−1,j

(
p

(l)
i,j,k−p

(l)
i,j−1,k

h2
y

)
,

q
(l)
i ,j ,k+1/2 = −

AV
K

(l)
k+1,k

(
p

(l)
i,j,k+1−p

(l)
i,j,k

h2
z

)
− K(pi,j,k+1)

2hz
,

q
(l)
i ,j ,k−1/2 = −

AV
K

(l)
k−1,k

(
p

(l)
i,j,k−p

(l)
i,j,k−1

h2
z

)
− K(pi,j,k−1)

2hz
,

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 17 / 34

The Newton method and the sequence of the Jacobians

Ñ Newton step for the solution, at each time step, of the nonlinear systems,

Ñ The Jacobian matrix J = JΦ can then be computed in closed form,

Ñ At the core of the (distributed) parallel solution we perform the solution of the (right)
preconditioned linear system

JM−1(Mdk) = −Φ(p(k,l)),

What did we do in https://arxiv.org/abs/2112.05051:

ß Describe the asymptotic spectral properties of the sequence {JN}N,

ß Analyze the impact of (some) of the different choices for the interface mean,

ß Use this information to get a matrix sequence {MN}N for preconditioning {JN}N,

ß Approximate such a matrix sequence by a (parallel) AMG method to efficiently solve the
systems.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 18 / 34

https://arxiv.org/abs/2112.05051

The Newton method and the sequence of the Jacobians

Ñ Newton step for the solution, at each time step, of the nonlinear systems,

Ñ The Jacobian matrix J = JΦ can then be computed in closed form,

Ñ At the core of the (distributed) parallel solution we perform the solution of the (right)
preconditioned linear system

JM−1(Mdk) = −Φ(p(k,l)),

What did we do in https://arxiv.org/abs/2112.05051:

ß Use this information to get a matrix sequence {MN}N for preconditioning {JN}N,

ß Approximate such a matrix sequence by a (parallel) AMG method to efficiently solve the
systems.

We focus here on the implementation aspects, for the spectral analysis and the other
mathematical information: https://arxiv.org/abs/2112.05051

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 18 / 34

https://arxiv.org/abs/2112.05051
https://arxiv.org/abs/2112.05051

The Theoretical sequence of preconditioners (cont’d)

, The theoretical analysis suggests that we can use the discretization of the diffusion
operator to precondition. This is somewhat natural, see, e.g., [Jones & Woodward, 2001],
but now we have a theoretical underpinning of why it works,

Ñ The organization of the proof works for different choices of the fluxes at the interfaces,

ß We use the Generalized Locally Toeplitz machinery to achieve the formal result; see the
books/papers by [Serra & Garoni 2017], [Barbarino, Serra, Garoni 2020].

But

ß We still need to find a way to apply {M−1
N }N sequence. Even if the sequence is simpler.

ï Use an Algebraic Multigrid Algorithm to generate a {M̃−1
N }N sequence.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 19 / 34

What do we ask to it?

Solve the preconditioned system:
JM̃−1(M̃dk) = −Φ(p(k,l)),

with matrix M̃−1 ≈ J−1 (right preconditioner) such that:

Algorithmic scalability maxi λi (M̃
−1J) ≈ 1 being independent of N,

Linear complexity the action of M̃−1 costs as little as possible, the best being O(N) flops,

Implementation scalability in a massively parallel computer, M̃−1 should be composed of local actions,
performance should depend linearly on the number of processors employed.

, Observe that by the GLT analysis, we know that maxi λi (M
−1J) ≈ 1, thus if our multigrid

hierarchy is “good enough” we can achieve a “near enough” result with it.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 20 / 34

An Algebraic Multigrid Approximation of {M−1
N }N

Given Matrix MN ∈ RN×N SPD

Wanted Iterative method M̃ to precondition a Krylov
iterative method:

Hierarchy of systems

Rlx=bl , l = 0, . . . , nlev

Transfer operators:

P l
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother

Rl : Rnl → Rnl

“High frequencies”

Prolongator

P l
l+1 : Rnl → Rnl+1

“Low frequencies”

Complementarity of Smoother and Prolongator

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 21 / 34

The KINSOL Software Framework

, To implement the Newton part of the Newton-Krylov solver we implemented an extension
to the SUNDIALS KINSOL package.

SUNDIALS

ARKODECVODESCVODE IDA IDAS KINSOL

SUNMATRIX APINVECTOR API SUNLINEARSOLVER API SUNNONLINEARSOLVER API

SERIAL PARALLEL
(MPI)

OPENMP PTHREADS

PARHYP
(HYPRE)

PETSC

CUDA RAJA

MPI +
CUDA

MPI +
RAJA

OPENMP PSBLAS

VECTOR MODULES

DENSE

BAND

SPARSE

PSBLAS

MATRIX MODULES

DENSE BAND

LAPACK
DENSE

LAPACK
BAND

KLU SUPERLU_MT

PSBLAS
AMG4PSBLAS

MATRIX BASED
LINEAR SOLVER MODULES

MATRIX-FREE

SPBCG SPGMR

SPFGMR SPTFQMR

PCG

NEWTON

FIXED
POINT

NONLINEAR SOLVER MODULES

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 22 / 34

From KINSOL to ParFlow

Ñ Wrapping of PSCToolkit distributed sparse linear algebra in KINSOL

ß NVECTOR: distributed vectors with all relevant operations (axpy, norms, dot, integrated
actions for group of vectors, . . .)

ß SUNMatrix: distributed matrix for all the formats in PSBLAS (CSR, CSC, COO, HYB, . . .) and
all the relevant operators (spmv, matrix shift, . . .)

ß SUNLinSol: interface to all the Krylov linear solvers in PSBLAS (CG, GMRES, BiCGStab,
. . .) and all the preconditioner that can be used (or added in future) to AMG4PSBLAS
(Algebraic Multigrid with different aggregation strategies, Domain Decomposition
techniques)

Ñ c (PSCToolkit) ⇒ c KINSOL ⇒ c ParFlow

Î KINSOL is used in many codes as the supplier of both linear and nonlinear solvers, this
first integration is portable for other problems.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 23 / 34

From KINSOL to ParFlow

Ñ Wrapping of PSCToolkit distributed sparse linear algebra in KINSOL

ß NVECTOR: distributed vectors with all relevant operations (axpy, norms, dot, integrated
actions for group of vectors, . . .)

ß SUNMatrix: distributed matrix for all the formats in PSBLAS (CSR, CSC, COO, HYB, . . .) and
all the relevant operators (spmv, matrix shift, . . .)

ß SUNLinSol: interface to all the Krylov linear solvers in PSBLAS (CG, GMRES, BiCGStab,
. . .) and all the preconditioner that can be used (or added in future) to AMG4PSBLAS
(Algebraic Multigrid with different aggregation strategies, Domain Decomposition
techniques)

Ñ c (PSCToolkit) ⇒ c KINSOL ⇒ c ParFlow

Î KINSOL is used in many codes as the supplier of both linear and nonlinear solvers, this
first integration is portable for other problems.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 23 / 34

From KINSOL to ParFlow

Ñ Wrapping of PSCToolkit distributed sparse linear algebra in KINSOL

ß NVECTOR: distributed vectors with all relevant operations (axpy, norms, dot, integrated
actions for group of vectors, . . .)

ß SUNMatrix: distributed matrix for all the formats in PSBLAS (CSR, CSC, COO, HYB, . . .) and
all the relevant operators (spmv, matrix shift, . . .)

ß SUNLinSol: interface to all the Krylov linear solvers in PSBLAS (CG, GMRES, BiCGStab,
. . .) and all the preconditioner that can be used (or added in future) to AMG4PSBLAS
(Algebraic Multigrid with different aggregation strategies, Domain Decomposition
techniques)

Ñ c (PSCToolkit) ⇒ c KINSOL ⇒ c ParFlow

Î KINSOL is used in many codes as the supplier of both linear and nonlinear solvers, this
first integration is portable for other problems.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 23 / 34

Problem and Machine

Ñ Parallelepipedal domain Ω of size [0, Lx]× [0, Ly]× [0, L],

Ñ Water at height z = L such that the pressure head becomes
zero in a square region at the center of the top layer

p(x , y , L, t) =
1

α
ln [exp(αhr) + (1− exp(αhr))

χ[a
4
, 3a

4
]×[b

4
, 3b

4
](x , y , z)

]
,

Ñ Initial condition is given by p(x , y , z , 0) = hr ,

Ñ In all cases we run the simulation for t ∈ [0, 2] and Nt = 10.

Marconi 100

(21th in 06/2022 TOP500)
ß IBM Power System AC922 nodes
< 2×16 IBM POWER93 3.1 GHz,

8 256 GB of RAM.

XDual-rail Mellanox EDR

Infiniband network by IBM 220/300

GB/s.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 24 / 34

Preconditioners

Multigrid One-Level

Cycle 1 sweep of V-cyle Additive Schwarz Type

Aggregation

Parallel Decoupled Parallel Coupled 1 layer of

Overlap

smoothed aggregation smoothed aggregation mesh points in
[Vaněk. Mandel, Brezina, 1996] based on graph matching each grid direction

aggregate size: 8
[D’Ambra, Filippone,

Vassilevski, 2018]

Pre/post-smoother
1 iteration of hybrid backward/forward

ILU(0)
Local

Gauss-Seidel solver

Coarsest solver preconditioned CG method with
ILU(1)-block-Jacobi preconditioner

Label VDSVMB VSMATCH AS Label

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 25 / 34

Preconditioners

Multigrid One-Level

Cycle 1 sweep of V-cyle Additive Schwarz Type

Aggregation

Parallel Decoupled Parallel Coupled 1 layer of

Overlap

smoothed aggregation smoothed aggregation mesh points in
[Vaněk. Mandel, Brezina, 1996] based on graph matching each grid direction

aggregate size: 8
[D’Ambra, Filippone,

Vassilevski, 2018]

Pre/post-smoother
1 iteration of hybrid backward/forward

ILU(0)
Local

Gauss-Seidel solver

Coarsest solver preconditioned CG method with
ILU(1)-block-Jacobi preconditioner

Label VDSVMB VSMATCH AS Label

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 25 / 34

Preconditioners

Multigrid One-Level

Cycle 1 sweep of V-cyle Additive Schwarz Type

Aggregation

Parallel Decoupled Parallel Coupled 1 layer of

Overlap

smoothed aggregation smoothed aggregation mesh points in
[Vaněk. Mandel, Brezina, 1996] based on graph matching each grid direction

aggregate size: 8
[D’Ambra, Filippone,

Vassilevski, 2018]

Pre/post-smoother
1 iteration of hybrid backward/forward

ILU(0)
Local

Gauss-Seidel solver

Coarsest solver preconditioned CG method with
ILU(1)-block-Jacobi preconditioner

Label VDSVMB VSMATCH AS Label

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 25 / 34

Strong Scalability Analysis

Ñ Parallelepiped [0, 64]× [0, 64]× [0, 1], discretized with Nx = Ny = 800, and Nz = 40 ⇒
20 millions of dofs,

< Computational cores from 1 to 256, i.e., np = 4p, p = 0, . . . , 4,

20 22 24 26 28
60

80

100

120

140

160

np

VSMATCH
VDSVMB
AS

Average number of linear iterations

20 22 24 26 28

10−1

100

np

VSMATCH
VDSVMB
AS

Average time per linear iteration T

(s)

20 22 24 26 28

102

103

np

VSMATCH
VDSVMB
AS

Total solution time T (s)

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 26 / 34

Strong Scalability Analysis

VDSVBM VSMATCH AS

np N Jac.s NLin It.s N Jac.s NLin It.s N Jac.s NLin It.s

1 3 36 3 38 3 43
4 3 37 3 38 4 39

16 3 37 3 38 4 39
64 3 37 3 38 4 39

256 3 37 3 38 4 39

Number of nonlinear iterations (NLin It.s), and number of computed Jacobians (N Jac.s)
for the three preconditioners.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 27 / 34

Weak scalability analysis

Ñ Nx = Ny = 50, and Nz = 40, Ω(np) = [0, 2p × 4.0]× [0, 2q × 4.0]× [0, 1.0]

< np = p × q processes, p = 0, . . . , 7, q = 0, . . . , 6, and a corresponding mesh
N(p × q) = (2pNx , 2

qNy ,Nz) ⇒ 820 millions of dofs.

21 25 29 213

100

150

200

np

VSMATCH
VDSVMB
AS

Average number of linear iterations

21 25 29 213

10−2

10−1.5

np

VSMATCH
VDSVMB
AS

Average time per linear iteration T

(s)

21 25 29 213

20

40

60

80

np

VSMATCH
VDSVMB
AS

Total solution time T (s)

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 28 / 34

Weak scalability analysis

VDSVBM VSMATCH AS

np N Jac.s NLin It.s N Jac.s NLin It.s N Jac.s NLin It.s

1 3 37 3 36 3 40
4 3 38 3 38 3 36

16 3 38 3 38 3 40
64 3 37 3 38 4 37

256 3 37 3 38 4 39
1024 3 39 3 38 4 41
4096 3 41 3 38 4 47
8192 3 40 3 38 4 48

Number of nonlinear iterations (NLin It.s), and number of computed Jacobians (N Jac.s)
for the three preconditioners.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 29 / 34

Weak scalability analysis - Time Fractions

20 22 24 26 28 210212213
0

0.2

0.4

0.6

0.8

1

VDSVMB

20 22 24 26 28 210212213
0

0.2

0.4

0.6

0.8

1

VSMATCH

20 22 24 26 28 210212213
0

0.2

0.4

0.6

0.8

1

Halo Feval
Jacobian Auxiliary
Setup LinSol
Overhead

AS

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 30 / 34

Conclusions and future perspectives

We focused on two main objectives

¢ prove some asymptotic spectral properties of the sequence of Jacobian matrices generated
discretizing the Richards equation;

¢ prove the efficiency, flexibility and robustness of a software framework for parallel sparse
matrix computations.

Our plans for the future

ß extension of the PSCToolkit interface to KINSOL, in order to use the ability of the
PSCToolkit linear solvers in exploiting GPU architectures;

ß integration of the software stack into the ParFlow code for realistic simulations in
hydrological applications.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 31 / 34

Conclusions and Future Directions
We have proved
¢ Aggregation procedure with certified quality,

¢ Scalability results on tens of thousands of cores,

¢ Comparable results with state of the art libraries,

¢ Interfacing with large scale scientific applications,

¢ Multi-GPU support.

Algorithmic and software extensions to AMG4PSBLAS (future work)
Ñ Multi-objective matching to increase coarsening ratio,

¯ Collaboration with Pacific Northwest National Laboratory (Richland, WA), and Purdue University

(IN)

Ñ Process remapping for coarse grid solutions,
¯ Collaboration with Centre national de la recherche scientifique (Toulouse)

Ñ GPU data and preconditioner setup improvements,

Ñ Communication avoiding Krylov methods,

Ñ Mixed-precision arithmetic.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 32 / 34

Essential bibliography

Multigrid based on matching

? P. D’Ambra and P. S. Vassilevski, Adaptive AMG with coarsening based on compatible weighted matching,
Comput. Vis. Sci. 16 (2013), no. 2, 59–76.

? P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package for bootstrap AMG based on
graph weighted matching, ACM Trans. Math. Software 44 (2018), no. 4, Art. 39, 25 pp.

? M. Bernaschi, P. D’Ambra and D. Pasquini, AMG based on compatible weighted matching for GPUs, Parallel
Comput. 92 (2020), 102599, 13 pp.

? P. D’Ambra, F. Durastante, S. Filippone and L. Zikatanov, Automatic coarsening in Algebraic Multigrid utilizing
quality measures for matching-based aggregations. arXiv preprint (2022), arXiv:2001.09969.

Scalability results

? P. D’Ambra, F. Durastante, and S. Filippone. “AMG preconditioners for linear solvers towards extreme scale.”
SIAM J. Sci. Comp. 43.5 (2021): S679-S703.

PSBLAS

? S. Filippone and A. Buttari, Object-oriented techniques for sparse matrix computations in Fortran 2003. ACM
Trans. Math. Software 38 (2012), no. 4, 1–20 pp.

? S. Filippone et al., Sparse matrix-vector multiplication on GPGPUs, ACM Trans. Math. Software 43 (2017),
no. 4, Art. 30, 49 pp.

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 33 / 34

arXiv:2001.09969

Thank You!

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 34 / 34

Quality and Convergence: a posteriori analysis

Convergence Theorem (D’Ambra, Durastante, Filippone, Zikatanov)

The exact TL–AMG with convergent smoother M, and prolongator P based on the maximum weight matching
applied on a SPD matrix A has a convergence rate of

‖I − B−1A‖A ≤ 1− µc

cD
, for µc = min

1≤j≤J
µj(V

c
j) = min

1≤j≤J

[
max
vj∈Vj

min
vcj ∈V

c
j

‖vj − vc
j ‖2

Dj

‖vj‖2
Aj

]
.

and cD the continuity constant of the smoother. Moreover, the µ−1
j (V c

j) are such that

λ−1
2 (D−1

j Aj) ≤ µ−1
j (V c

j) ≤ λ−1
1 (D−1

j Aj).

Furthermore, if either (wei→j , λ1(D−1
j Aj), or (w⊥ei→j

, λ2(D−1
j Aj) are eigencouples of D−1

j Aj , then

µ−1
j (V c

j) = λ−1
2 (D−1

j Aj)

The local constants µ−1
j (V c

j) are then a quality measure for the single aggregates

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 35 / 34

Fixing the parameters

We can fix the weight vector w, and evaluate the performance of the
matching algorithms.

Theorem (Optimal prolongator)

Let {λj ,Φj)
n
j=1 be the eigenpairs of T = MA for the symmetrized

smoother M. Let us also assume that Φj are orthogonal w.r.t. (·, ·)
M
−1 .

The convergence rate ‖E (P)‖A is minimal for P such that

Range(P) = Range(Popt),

where Popt = {Φ1, . . . ,Φnc}. In this case,

‖E‖2
A = 1− λnc+1

For our choice of P we know that:

There exists h ∈ Rnc such that Ph = w

,A good candidate can be
obtained by exploiting the

symmetrized smoother M to
select as a weight vector an

ε–smooth algebraic vector, i.e.,
for a given ε ∈ (0, 1), v an
algebraically ε-smooth with

respect to A if

‖v‖2
A ≤ ε‖v‖2

M
−1 .

Salvatore Filippone (UNITOV) AMG for Extreme Scale Solvers Berkeley 2022 36 / 34

	Solving Large Linear Systems
	PSCToolkit
	Parallel AMG Algorithms
	Numerical Examples
	The Richards Equation a Groundwater Fluid Model
	Approximating the Jacobians sequence
	An Algebraic Multigrid Preconditioner
	The Software Framework
	Problem, Machine and Preconditioners
	Strong Scalability Analysis
	Weak Scalability Analysis
	Conclusions and Future Directions
	Appendix

