
(Sparse) Linear Algebra at the Extreme Scales

Fabio Durastante
Università di Pisa – December 1, 2020

Consiglio Nazionale delle Ricerche
Istituto per le Applicazioni del Calcolo “M. Picone”
f.durastante@na.iac.cnr.it

f.durastante@na.iac.cnr.it

Collaborators and Funding

Joint work with

Pasqua D’Ambra,
Consiglio Nazionale delle Ricerche
Istituto per le Applicazioni del Calcolo “M. Picone”

Salvatore Filippone,
Università degli Studi di Roma “Tor Vergata”

Dipartimento di Ingegneria Civile e Ingegneria Informatica
Consiglio Nazionale delle Ricerche

Istituto per le Applicazioni del Calcolo “M. Picone”

Funded by

Solving Large Linear Systems

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn,

.

is often the most time consuming computational kernel in
many areas of computational science and engineering
problems.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10

n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“In a ground wire problem involving a large number of ground conductors, 13
simultaneous equations were solved…” – Dwight (1930)”
“The second machine, now in operation, was designed for the direct solution
of nine or fewer simultaneous equations.” – Wilbur, J. B. (1936) 1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20

n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“Finally, though the labour of relaxation in three dimensions is prohibitively
great, the future use of the new electronic calculating machines in this
connexion is a distinct possibility” – Fox, L. (1947)

1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90

n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“The Ferranti PEGASUS computer, with a main store of 4096 words, can solve
a maximum of 86 simultaneous equations by its standard subroutine and
takes about 45 minutes to complete this calculation.” – Wilson, L. B. (1959)

1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5
n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“…the bound imposed by this is m+ n ≤ 474. In addition, this number of
equations would fill one standard (1.800ft) reel of magnetic tape, and the
fifty-odd hours taken in the calculation might be thought excessive.” –
Barron, Swinnerton-Dyer (1960) 1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“…handling problems involving sets of simultaneous equations of
two-thousandth order, and SAMIS available through ”Cosmic” at the
University of Georgia, which can treat up to 10,000 simultaneous equations.”
– Melosh, Schmele (1969) 1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

“The mini-computer cost algorithm is applied to the same complex shell
problem used previously, with 9120 degrees of freedom […]. The running
times, however, are 40 and 70 hr, respectively! It would appear that
improvement of mini-computer speeds is required…” – Kamel, McCabe (1978) 1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6

n ∼ 106,7
n ∼ 10≥8

“For instance, Pomerell in 1994 reports on successful application of
preconditioned Krylov methods for very ill-conditioned unstructured finite
element systems of order up to 210,000 that arise in semiconductor device
modeling.” – Saad Y., van der Vorst, H.A. (2000) 1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“As a second example, we show results (Table VIII) for a problem arising in
ocean modeling (barotropic equation) with n = 370, 000 unknowns and
approximately 3.3 million nonzero entries…” – Benzi, M. (2002)

1

What we want to solve

Solve : Ax = b,

where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“Problem: Large, mesh size: 180× 60× 30, ♯ unknowns (in simulation):
1,010,160, Solution time 45.7 h” – Wang, de Sturler, Paulino (2006)

1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7

n ∼ 10≥8

“The parallel GMRES was tested on the Tesla T10P GPU using a set of matrix
data from the oil field simulation data of Conoco Phillips. The order of the
system ranges from ∼ 2000 to ∼ 1.1 million.” – M. Wang, H. Klie, M. Parashar,
H. Sudan (2009) 1

What we want to solve

Solve : Ax = b,
where

• A ∈ Rn×n is a very large and sparse matrix nnz(A) = O(n),
• x,b ∈ Rn.

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500
n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

The exascale challenge, using computer that do 1015 Flops,
targeting next-gen systems doing 1018 Flops to solve problems
with tens of billions of unknowns. 1

The philosophy behind the effort

C. E. Leiserson, N. C. Thompson, J. S. Emer,

B. C. Kuszmaul, B. W. Lampson, D. Sanchez, and

T. B. Schardl, “There’s plenty of room at the Top:

What will drive computer performance after

Moore’s law?”, Science (2020)

“As miniaturization wanes, the
silicon-fabrication improvements
at the Bottom will no longer
provide the predictable,

broad-based gains in computer
performance that society has
enjoyed for more than 50 years.

Software performance
engineering, development of
algorithms, and hardware
streamlining at the Top can
continue to make computer
applications faster in the

post-Moore era.”

2

Target Applications

Wind Models

Image credits H. Owen and G. Marin,
Barcelona Supercomputing Centre

Regional Hydrological Models

DoFs: n ∼ 1010 Processors: np ∼ 106

3

Where we want to solve it1

System Cores Rmax
(TFlops/s)

1 Fugaku 7,630,848 442,010.0
2 Summit 2,414,592 148,600.0
3 Sierra 1,572,480 94,640.0
...

...
...

...
11 Marconi-100 347,776 21,640.0
12 Piz Daint 387,872 21,230.0
...

...
...

...
42 MareNostrum 153,216 6,470.8

MareNostrum IV - BSC

Piz Daint - CSCS

• Machines with hundreds of MPI cores,

• Hybrid form of parallelism: MPI, OpenMP, CUDA/OpenCL, …

• but how we want to solve it?

1TOP500 list, November 2020 – https://www.top500.org
4

https://www.top500.org

Where we want to solve it1

System Cores Rmax
(TFlops/s)

1 Fugaku 7,630,848 442,010.0
2 Summit 2,414,592 148,600.0
3 Sierra 1,572,480 94,640.0
...

...
...

...
11 Marconi-100 347,776 21,640.0
12 Piz Daint 387,872 21,230.0
...

...
...

...
42 MareNostrum 153,216 6,470.8

MareNostrum IV - BSC

Piz Daint - CSCS

• Machines with hundreds of MPI cores,

• Hybrid form of parallelism: MPI, OpenMP, CUDA/OpenCL, …

• but how we want to solve it?
1TOP500 list, November 2020 – https://www.top500.org

4

https://www.top500.org

Parallel AMG Algorithms

Algebraic Multigrid Algorithms

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to
precondition the CG method:

• Hierarchy of systems
Alx=bl, l = 0, . . . ,nlev

• Transfer operators:
Pll+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother
Ml : Rnl → Rnl

“High frequencies”

Prolongator
Pll+1 : Rnl → Rnl+1

“Low frequencies”
Complementarity of Smoother and Prolongator

5

What do we ask to it?

Solve the preconditioned system:

B−1Ax = B−1b,

with matrix B−1 ≈ A−1 (left preconditioner) such that:

Algorithmic scalability maxi λi(B−1A) ≈ 1 being independent of n,

Linear complexity the action of B−1 costs as little as possible, the
best being O(n) flops,

Implementation scalability in a massively parallel computer, B−1
should be composed of local actions, performance
should depend linearly on the number of processors
employed.

6

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties, e.g., ℓ1–Jacobi, Hybrid-FBGS,
Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on
matching in the weighted (adjacency) graph of A.

• The coarse solver is again a preconditioned CG method.

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties, e.g., ℓ1–Jacobi, Hybrid-FBGS,
Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on
matching in the weighted (adjacency) graph of A.

• The coarse solver is again a preconditioned CG method.

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties, e.g., ℓ1–Jacobi, Hybrid-FBGS,
Hybrid-SGS, CG method, etc.

• The prolongator P is built by dofs aggregation based on
matching in the weighted (adjacency) graph of A.

• The coarse solver is again a preconditioned CG method.

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties:

GS A = M− N, with M = L+ D and N = −LT, where D = diag(A)
and L = tril(A) is intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the
row-block local to each process the method acts as the GS
method.

ℓ1-HGS On process p = 1, . . . ,np relative to the index set Ωp we
factorize App = Lpp + Dpp + LTpp for Dpp = diag(App) and
Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on
the block⇒ suitable for GPU application!

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties:
GS A = M− N, with M = L+ D and N = −LT, where D = diag(A)

and L = tril(A) is intrinsically sequential!

HGS Inexact block-Jacobi version of GS, in the portion of the
row-block local to each process the method acts as the GS
method.

ℓ1-HGS On process p = 1, . . . ,np relative to the index set Ωp we
factorize App = Lpp + Dpp + LTpp for Dpp = diag(App) and
Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on
the block⇒ suitable for GPU application!

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties:
GS A = M− N, with M = L+ D and N = −LT, where D = diag(A)

and L = tril(A) is intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the

row-block local to each process the method acts as the GS
method.

ℓ1-HGS On process p = 1, . . . ,np relative to the index set Ωp we
factorize App = Lpp + Dpp + LTpp for Dpp = diag(App) and
Lpp = trilu(App) and select:

AINV Block-Jacobi with an approximate inverse factorization on
the block⇒ suitable for GPU application!

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties:
GS A = M− N, with M = L+ D and N = −LT, where D = diag(A)

and L = tril(A) is intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the

row-block local to each process the method acts as the GS
method.

ℓ1-HGS On process p = 1, . . . ,np relative to the index set Ωp we
factorize App = Lpp + Dpp + LTpp for Dpp = diag(App) and
Lpp = trilu(App) and select:

Mℓ1−HGS =diag((Mℓ1−HGS)p)p=1,...np,

(Mℓ1−HGS)p =Lpp + Dpp + Dℓ1p,

(dℓ1)nbi=1 =
∑
j∈Ωnb

p

|aij|.

AINV Block-Jacobi with an approximate inverse factorization on
the block⇒ suitable for GPU application!

7

What is our recipe?

• The smoother M is a standard iterative solver with good
parallel properties:
GS A = M− N, with M = L+ D and N = −LT, where D = diag(A)

and L = tril(A) is intrinsically sequential!
HGS Inexact block-Jacobi version of GS, in the portion of the

row-block local to each process the method acts as the GS
method.

ℓ1-HGS On process p = 1, . . . ,np relative to the index set Ωp we
factorize App = Lpp + Dpp + LTpp for Dpp = diag(App) and
Lpp = trilu(App) and select:

Mℓ1−HGS = diag((Mℓ1−HGS)p)p=1,...np,

AINV Block-Jacobi with an approximate inverse factorization on
the block⇒ suitable for GPU application!

7

What is our recipe?

• The prolongator P is built by dofs aggregation based on
matching in the weighted (adjacency) graph of A.

Given w ∈ Rn, let P ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator
and a complementary prolongator, such that:

Rn = Range(P)⊕⊥ Range(Pf), n = nc + nf
w ∈ Range(P): coarse space Range(Pf): complementary space

[P,Pf]TA[P,Pf] =
(
PTAP PTAPf
PTf AP PTf APf

)
=

(
Ac Acf
Afc Af

)
Ac: coarse matrix Af: hierarchical complement

Sufficient condition for efficient coarsening
Af = PTf APf as well conditioned as possible, i.e.,

Convergence rate of compatible relaxation: ρf = ∥I−M−1
f Af∥Af ≪ 1

7

But how we achieve it?

Weighted graph matching
Given a graph G = (V, E) (with adjacency
matrix A), and a weight vector w we
consider the weighted version of G obtained
by considering the weight matrix Â:

(Â)i,j = âi,j = 1−
2ai,jwiwj

ai,iw2i + aj,jw2j
,

• a matchingM is a set of pairwise
non-adjacent edges, containing no
loops;

• a maximum product matching if it
maximizes the product of the weights
of the edges ei 7→j in it.

We divide the index set
into matched vertexes

I =
∪np
i=1 Gi, with

Gi ∩ Gj = ∅ if i ̸= j, and
unmatched vertexes, i.e.,

ns singletons Gi .

8

But how we achieve it?

Weighted graph matching
Given a graph G = (V, E) (with adjacency
matrix A), and a weight vector w we
consider the weighted version of G obtained
by considering the weight matrix Â:

(Â)i,j = âi,j = 1−
2ai,jwiwj

ai,iw2i + aj,jw2j
,

• a matchingM is a set of pairwise
non-adjacent edges, containing no
loops;

• a maximum product matching if it
maximizes the product of the weights
of the edges ei 7→j in it.

We divide the index set
into matched vertexes

I =
∪np
i=1 Gi, with

Gi ∩ Gj = ∅ if i ̸= j, and
unmatched vertexes, i.e.,

ns singletons Gi .

8

From the matching to the prolongator

We can formally define a prolongator:

P =



we1 0 0

0
. . . 0

0 0 wenp


np

2np 0

0
w1/|w1| 0 0

0
. . . 0

0 0 wns/|wns |


ns

ns




nc=np+ns=J

n
=
2n

p
+
n s

=

[
P̃ O
O W

]
= [p1, . . . ,pJ], we =

1√
w2i + w2j

[
wi
wj

]
.

⇒ TheM on Â produces Af with diagonal entries âij for (i, j) ∈ M of
maximal product. 9

From the matching to the prolongator

We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the
multiplicative composition of

I− BlAl = (I− (Ml)
−TAl)(I− PlBl+1(Pl)TAl)(I−M−1

l Al) ∀l < nl,

where Al+1 = (Pl)TAlPl for l = 0, . . . ,nl− 1.

• To increase dimension reduction we can perform more than
one sweep of matching per step,

• To increase regularity of Pl we can consider a smoothed
prolongator by applying a Jacobi smoother,

• To increase the robustness we can use a non stationary solver
as smoother.

9

From the matching to the prolongator

We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the
multiplicative composition of

I− BlAl = (I− (Ml)
−TAl)(I− PlBl+1(Pl)TAl)(I−M−1

l Al) ∀l < nl,

where Al+1 = (Pl)TAlPl for l = 0, . . . ,nl− 1.

• To increase dimension reduction we can perform more than
one sweep of matching per step,

• To increase regularity of Pl we can consider a smoothed
prolongator by applying a Jacobi smoother,

• To increase the robustness we can use a non stationary solver
as smoother.

9

From the matching to the prolongator

We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the
multiplicative composition of

I− BlAl = (I− (Ml)
−TAl)(I− PlBl+1(Pl)TAl)(I−M−1

l Al) ∀l < nl,

where Al+1 = (Pl)TAlPl for l = 0, . . . ,nl− 1.

• To increase dimension reduction we can perform more than
one sweep of matching per step,

• To increase regularity of Pl we can consider a smoothed
prolongator by applying a Jacobi smoother,

Psl = (I− ωD−1
l Al)Pl, for Dl = diag(Al).

• To increase the robustness we can use a non stationary solver
as smoother.

9

From the matching to the prolongator

We can formally define a prolongator:

P =

[
P̃ O
O W

]
= [p1, . . . ,pJ].

Then the preconditioner is the linear operator corresponding to the
multiplicative composition of

I− BlAl = (I− (Ml)
−TAl)(I− PlBl+1(Pl)TAl)(I−M−1

l Al) ∀l < nl,

where Al+1 = (Pl)TAlPl for l = 0, . . . ,nl− 1.

• To increase dimension reduction we can perform more than
one sweep of matching per step,

• To increase regularity of Pl we can consider a smoothed
prolongator by applying a Jacobi smoother,

• To increase the robustness we can use a non stationary solver
as smoother.

9

Parallel Matching Algorithms

1. What is the best matching
algorithm from the
computational point of view?

2. How can we evaluate the quality
(in term of the AMG algorithm)
of the resulting matching?

Maximum weight matching
MC64 algorithm (HSL library) based on
Hungarian method, it seeks optimal
solution for the maximum
cardinality/weight matching but has a
large computational complexity,
O(n(n+ nnz) log n), and it is
intrinsically sequential
Therefore, we look for

• Sub-optimal algorithms,

• quality guarantee of the
computed matching, generally
1/2−approximation to a
maximum weight matching

• linear-time O(nnz) complexity

10

Parallel Matching Algorithms

1. What is the best matching
algorithm from the
computational point of view?

2. How can we evaluate the quality
(in term of the AMG algorithm)
of the resulting matching?

• input matrix distributed by
blocks of contiguous rows,

• asynchrounous algorithm using
message-aggregation to
optimize communication and
improve scalability

• variant available for GPU
(GPU-Suitor)

1 Algorithm: Locally Dominant Edge
Input: Graph G = (V, E), Weights Â

2 M← ∅;
3 while E ̸= ∅ do
4 Take a locally dominant edge

(i, j) ∈ E , i.e., such that

argmax
k
âik = argmax

k
âjk = âij

Add (i, j) ∈M;
5 Remove all edges incident to i

and j from E ;
6 end
Output: MatchingM

10

Parallel Matching Algorithms

1. What is the best matching
algorithm from the
computational point of view?

2. How can we evaluate the quality
(in term of the AMG algorithm)
of the resulting matching?

10

Parallel Matching Algorithms

1. What is the best matching
algorithm from the
computational point of view?

2. How can we evaluate the quality
(in term of the AMG algorithm)
of the resulting matching?

With the formalism from (Xu and
Zikatanov, 2017) and using a technique
from (Napov and Notay, 2011) we
associate a quality measure of the
aggregates in terms of the
convergence properties of the whole
AMG method! Better aggregates give
better convergence properties.

10

Quality and Convergence: a posteriori analysis

Convergence Theorem (D’Ambra, D., Filippone)
The exact TL–AMG with convergent smoother M, and prolongator P based on
the maximum weight matching applied on a SPD matrix A has a convergence
rate of

∥I− B−1A∥A ≤ 1−
µc
cD , for µc = min

1≤j≤J
µj(Vcj) = min

1≤j≤J

[
max
vj∈Vj

min
vcj∈V

c
j

∥vj − vcj ∥2Dj
∥vj∥2Aj

]
.

and cD the continuity constant of the smoother. Moreover, the µ−1
j (Vcj) are

such that
λ−1
2 (D−1

j Aj) ≤ µ−1
j (Vcj) ≤ λ−1

1 (D−1
j Aj).

Furthermore, if either (wei→j , λ1(D
−1
j Aj), or (w⊥

ei→j , λ2(D
−1
j Aj) are eigencouples

of D−1
j Aj, then

µ−1
j (Vcj) = λ−1

2 (D−1
j Aj)

• The constants cD depends on the symmetrized M convergent
smoother

cD∥v∥2D ≤ ∥v∥2M−1 ≤ cD∥v∥2D. 11

Quality and Convergence: a posteriori analysis

Convergence Theorem (D’Ambra, D., Filippone)
The exact TL–AMG with convergent smoother M, and prolongator P based on
the maximum weight matching applied on a SPD matrix A has a convergence
rate of

∥I− B−1A∥A ≤ 1−
µc
cD , for µc = min

1≤j≤J
µj(Vcj) = min

1≤j≤J

[
max
vj∈Vj

min
vcj∈V

c
j

∥vj − vcj ∥2Dj
∥vj∥2Aj

]
.

and cD the continuity constant of the smoother. Moreover, the µ−1
j (Vcj) are

such that
λ−1
2 (D−1

j Aj) ≤ µ−1
j (Vcj) ≤ λ−1

1 (D−1
j Aj).

Furthermore, if either (wei→j , λ1(D
−1
j Aj), or (w⊥

ei→j , λ2(D
−1
j Aj) are eigencouples

of D−1
j Aj, then

µ−1
j (Vcj) = λ−1

2 (D−1
j Aj)

• The local constants µ−1
j (Vcj) are then a quality measure for the

single aggregates
11

Quality and Convergence: a posteriori analysis

Convergence Theorem (D’Ambra, D., Filippone)
The exact TL–AMG with convergent smoother M, and prolongator P based on
the maximum weight matching applied on a SPD matrix A has a convergence
rate of

∥I− B−1A∥A ≤ 1−
µc
cD , for µc = min

1≤j≤J
µj(Vcj) = min

1≤j≤J

[
max
vj∈Vj

min
vcj∈V

c
j

∥vj − vcj ∥2Dj
∥vj∥2Aj

]
.

and cD the continuity constant of the smoother. Moreover, the µ−1
j (Vcj) are

such that
λ−1
2 (D−1

j Aj) ≤ µ−1
j (Vcj) ≤ λ−1

1 (D−1
j Aj).

Furthermore, if either (wei→j , λ1(D
−1
j Aj), or (w⊥

ei→j , λ2(D
−1
j Aj) are eigencouples

of D−1
j Aj, then

µ−1
j (Vcj) = λ−1

2 (D−1
j Aj)

• The global constant µc is a quality measure for the whole
aggregation process

11

Fixing the parameters

We can fix the weight vector w, and evaluate the
performance of the matching algorithms.

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

correlation = -0.0368665

“With four parameters I
can fit an elephant, and
with five I can make him
wiggle his trunk.” – J. von

Neumann

12

Fixing the parameters

We can fix the weight vector w, and evaluate the
performance of the matching algorithms.

Theorem (Optimal prolongator)
Let {λj,Φj)

n
j=1 be the eigenpairs of T = MA for

the symmetrized smoother M̂. Let us also
assume that Φj are orthogonal w.r.t. (·, ·)M−1 . The
convergence rate ∥E(P)∥A is minimal for P such
that

Range(P) = Range(Popt),

where Popt = {Φ1, . . . ,Φnc}. In this case,

∥E∥2A = 1− λnc+1

For our choice of P we know that:

• There exists h ∈ Rnc such that Ph = w

A good candidate
can be obtained by
exploiting the
symmetrized
smoother M to

select as a weight
vector an ε–smooth
algebraic vector, i.e.,
for a given ϵ ∈ (0, 1),
v an algebraically
ϵ-smooth with
respect to A if

∥v∥2A ≤ ϵ∥v∥2M−1 .

12

An Example of Quality Analysis

Test problems: 2D Laplace equation
The 2D Laplace equation with variable coefficients on the unit square
Ω = [0, 1]2, dicretized with 5–point finite differences, i.e. the equation{

−∇ · (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.

• We focus on a 2D example so that we can graphically represent
the different aggregates,

• As choice of the coefficient a(x, y) we take an axial oriented
anistropy of modulus ε = 100 and angle θ = π/8

13

An Example of Quality Analysis

Test problems: 2D Laplace equation
The 2D Laplace equation with variable coefficients on the unit square
Ω = [0, 1]2, dicretized with 5–point finite differences, i.e. the equation{

−∇ · (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.

0th Iteration 20th Iteration 40th Iteration 60th Iteration 80th Iteration

0 10 20 30 40 50 60 70 80

Refinement Iterations

0

2

4

6

8

10
Preis
HSL_MC64

Spral-Auction

Suitor

(a) Refinements from a random w.

13

An Example of Quality Analysis

Test problems: 2D Laplace equation
The 2D Laplace equation with variable coefficients on the unit square
Ω = [0, 1]2, dicretized with 5–point finite differences, i.e. the equation{

−∇ · (a(x, y)∇u(x, y)) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.

0th Iteration 20th Iteration 40th Iteration 60th Iteration 80th Iteration

0 10 20 30 40 50 60 70 80

Refinement Iterations

1.2

1.4

1.6

1.8

2
Preis
HSL_MC64

Spral-Auction

Suitor

(b) Refinements from w = (1, 1, . . . , 1)T

13

PSCToolkit

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:

• Existing software standards:
• MPI, OpenMP,
CUDA

• Serial sparse

BLAS,
• (Par)Metis,
• AMD

• Attention to performance using modern
Fortran;

• Research on new preconditioners;

• No need to delve in the data structures for
the user;

• Tools for error and mesh handling beyond
simple algebraic operations;

• Standard Krylov solvers
14

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:

• Domain decomposition preconditioners

• Algebraic multigrid with aggregation
schemes

• Vaněk, Mandel,
Brezina

• Matching
Based

Aggregation

• Smoothed
Aggregation

• Parallel Smoothers (Block-Jacobi,
Hybrid-GS/SGS/FBGS, ℓ1 variants) that can
be coupled with specialized block
(approximate) solvers MUMPS, SuperLU,
Incomplete Factorizations (AINV, INVK/L,
ILU-type)

• V-Cycle, W-Cycle, K-Cycle 14

psctoolkit.github.io

Parallel Sparse Computation Toolkit – psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS.

 Freely available from:
https://psctoolkit.github.io,

 Open Source with BSD 3 Clause License,

 Soon to be released/interfaced with the
Alya multi-physics solver, and the ParFlow
solver, KINSOL non-linear solvers.
These are collaborations with:

14

psctoolkit.github.io
https://psctoolkit.github.io

Parallel Sparse Computation Toolkit – Application Example

Init, setup and build the preconditioner

call prec%init(ictxt,ptype,info)
! Set-up calls
call prec%set('ml_cycle', 'KCYCLE', info)
call prec%set('outer_sweeps', 1, info)
! ... build
call prec%hierarchy_build(a,desc_a,info)
call prec%smoothers_build(a,desc_a,info)

Solve the linear system

call psb_krylov("FCG",a,prec,b,x,eps, &
& desc_a,info,itmax=100,iter=iter, err=err)

There are also C interfaces available for everything!

15

Parallel Sparse Computation Toolkit – Application Example

Init, setup and build the preconditioner

call prec%init(ictxt,ptype,info)
! Set-up calls
call prec%set('ml_cycle', 'KCYCLE', info)
call prec%set('outer_sweeps', 1, info)
! ... build
call prec%hierarchy_build(a,desc_a,info)
call prec%smoothers_build(a,desc_a,info)

Solve the linear system

call psb_krylov("FCG",a,prec,b,x,eps, &
& desc_a,info,itmax=100,iter=iter, err=err)

There are also C interfaces available for everything!
15

Numerical Examples

Comparison with Hypre - CPU Runs - MareNostrum

Comparison with the preconditioners available in the Hypre, a
state of the art preconditioning library from LLNL.

 Run on the MareNostrum machine up to 8192 cores
 Test: 3D Constant coefficient Poisson Problem with FCG
 DoF: 256k unknown × MPI core
 Measures: Operator Complexity opc =

∑nl−1
l=0 nnz(Al)
nnz(A0) and

Solve Time (s).

Scaling
There are two common notions of scalability:

• Strong scaling is defined as how the solution time varies with
the number of processors for a fixed total problem size.

• Weak scaling is defined as how the solution time varies with the
number of processors for a fixed problem size per processor.

16

Comparison with Hypre - CPU Runs - MareNostrum

Comparison with the preconditioners available in the Hypre, a
state of the art preconditioning library from LLNL.

 Run on the MareNostrum machine up to 8192 cores
 Test: 3D Constant coefficient Poisson Problem with FCG
 DoF: 256k unknown × MPI core
 Measures: Operator Complexity opc =

∑nl−1
l=0 nnz(Al)
nnz(A0) and

Solve Time (s).

Scaling
There are two common notions of scalability:

• Strong scaling is defined as how the solution time varies with
the number of processors for a fixed total problem size.

• Weak scaling is defined as how the solution time varies with the
number of processors for a fixed problem size per processor.

16

Comparison with Hypre - CPU Runs - MareNostrum

Giving a name to preconditioners with many parameters:

K PMC3 l1HGS PKR

Cycle

K
V

Aggregation

Unsmoothed Parallel
Matching 3/4
Smoothed Parallel
Matching 3/4
Smoothed VBM

Smoother
Hybrid Gauss-
Seidel
l1–Hybrid Gauss-
Seidel
INVK
l1–INVK
l1–Jacobi

Coarsest solver
Preconditioned
Krylov Method

For Hypre we test HMIS and Falgout coarsening schemes. 17

Comparison with Hypre - CPU Runs - MareNostrum

1 2 4 8 16 32 64 12
8

25
6 51
2

10
24

20
48

40
96

81
92

2

3

4

5

number of MPI cores

Operator Complexity

VFLGHGS1DS VHMISHGS1DS VHMIS1HGS1DS
KPMC3HGS1PKR VUVBMHGS1PKR

1 2 4 8 16 32 64 12
8

25
6 51
2

10
24

20
48

40
96

81
92

10

20

30

40

number of MPI cores

Iterations

18

Comparison with Hypre - CPU Runs - MareNostrum

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

2

4

number of MPI cores

Execution Time for Solve (sec.)

VFLGHGS1DS VHMISHGS1DS VHMISH1GS1DS
KPMC3HGS1PKR VUVBM1HGS1PKR

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

100

101

102

number of MPI cores

Speedup of the Solve

18

Weak Scalability - CPU/GPU Runs - Piz Daint

The resulting performance of the multigrid preconditioner in
term of implementation scalability depends also on how
effective the coarsening procedure is, and on how well
balanced is the distribution of the coarsest matrix.

 Run on the Piz Daint machine up to 28800 cores and 2048
GPUs

 Test: 3D Constant coefficient Poisson Problem with FCG
 DoF: 256k/512k/1M unknown × MPI core and 3M/6M per

GPUs
 Measures: execution time for solve

19

Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
10−1

100

101

1 2 4
8 16

32 64
128
256

512

102420484096

8192

16384

28800

1
2
4
8 16

32 64
128256512

10242048

dofs

Execution Time for Solve (s) - K-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

6144000 dof x GPU
3072000 dof x GPU
256000 dof x MPI core
512000 dof x MPI core
1024000 dof x MPI core

20

Weak Scalability - CPU/GPU Runs - Piz Daint

105 106 107 108 109 1010 1011
10−1

100

101

1
2 4 8

16
32
64
128256

512

1024

2048

4096
8192
16384

28800

1
2
4

8 16
32 64

128256512
10242048

dofs

Execution Time for Solve (s) - VS-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

6144000 dof x GPU
3072000 dof x GPU
256000 dof x MPI core
512000 dof x MPI core
1024000 dof x MPI core

20

A CFD application inside Alya

From a Joint work with
Herbert Owen

Barcelona Super Computing Center

Bolund is an isolated hill
situated in Roskilde Fjord,
Denmark. An almost vertical
escarpment in the prevailing
W-SW sector ensures flow
separation in the windward
edge resulting in a complex

flow field.

• Model: 3D incompressible unsteady
Navier-Stokes equations for the
Large Eddy Simulations of turbulent
flows,

• Discretization: low-dissipation
mixed FEM (linear FEM both for
velocity and pressure),

• Time-Stepping: non-incremental
fractional-step for pressure, explicit
fourth order Runge-Kutta method
for velocity. 21

Bolund Test Case - Strong Scaling - Pressure Equation

Fixed size problem with n = 5570786 dofs, 100 time steps

• Total number of linear iterations is smaller and stable for
increasing number of cores,

• The time needed per each iteration decreases for increasing
number of cores.

22

Bolund Test Case - Strong Scaling - Pressure Equation

Fixed size problem with n = 5570786 dofs, 100 time steps

• Total number of linear iterations is smaller and stable for
increasing number of cores,

• The time needed per each iteration decreases for increasing
number of cores. 22

Conclusions and Future Directions

Conclusions and Future Directions

We have proved

 Aggregation procedure with certified quality,
 Scalability results on thousands of cores,
 Comparable results with state of the art libraries,
 Interfacing with large scale scientific applications.

Algorithmic and software extensions to AMG4PSBLAS

 Multi-objective matching to reduce the number of
singletons,

 Process remapping for coarse grid solutions,
 Communication avoiding Krylov methods.

Completely new extension packages for the PSCToolkit,

 Parallel computations of f(A)b for general f(x),
 Krylov based eigenvalue solvers.

23

Essential bibliography

• Multigrid based on matching
 P. D’Ambra and P. S. Vassilevski, Adaptive AMG with coarsening based on

compatible weighted matching, Comput. Vis. Sci. 16 (2013), no. 2, 59–76.
 P. D’Ambra, S. Filippone and P. S. Vassilevski, BootCMatch: a software package

for bootstrap AMG based on graph weighted matching, ACM Trans. Math.
Software 44 (2018), no. 4, Art. 39, 25 pp.

 M. Bernaschi, P. D’Ambra and D. Pasquini, AMG based on compatible weighted
matching for GPUs, Parallel Comput. 92 (2020), 102599, 13 pp.

 P. D’Ambra, F. Durastante and S. Filippone, On the quality of matching-based
aggregates for algebraic coarsening of SPD matrices in AMG. arXiv preprint
(2020), arXiv:2001.09969.

• Scalability results
 P. D’Ambra, F. Durastante and S. Filippone,AMG preconditioners for Linear

Solvers towards Extreme Scale. arXiv preprint (2020), arXiv:2006.16147.
• PSBLAS

 S. Filippone and A. Buttari, Object-oriented techniques for sparse matrix
computations in Fortran 2003. ACM Trans. Math. Software 38 (2012), no. 4, 1–20
pp.

 S. Filippone et al., Sparse matrix-vector multiplication on GPGPUs, ACM Trans.
Math. Software 43 (2017), no. 4, Art. 30, 49 pp. 24

arXiv:2001.09969
arXiv:2006.16147

Thank you!

24

	Solving Large Linear Systems
	Parallel AMG Algorithms
	PSCToolkit
	Numerical Examples
	Conclusions and Future Directions

