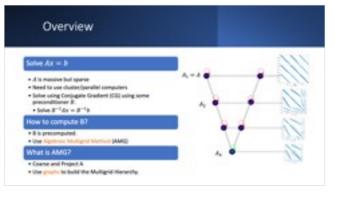
AMG Preconditioners based on Parallel Hybrid Coarsening and Bi-objective Matching

S M Ferdous, PNNL

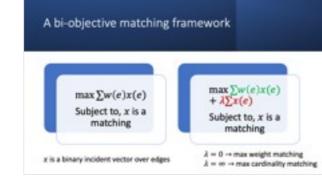
✓ <u>sm.ferdous@pnnl.gov</u>

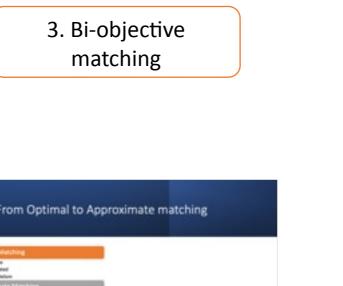
Pasqua D'Ambra, IAC,CNR Fabio Durastante, Uni. of Pisa Salvatore Filippone, Uni. of Rome-Vergatta Mahantesh Halappanavar, PNNL Alex Pothen, Purdue

Horizon 2020 European Union funding for Research & Innovation



1. Overview





Experiments · Metrics · Operator Complexity • Measure of the memory footprint of the multigrid and estimated cost of a V cycle $epc = \frac{\sum_i x_{ii}(A_i)}{mu(A_i)} > 1$ + Number of iterations Number of iterations of the preconditioned CS solver · Setup time · Building time the preconditioner using bi-objective matching Solving time Total solution time of preconditioned CG

5. Empirical results

2. Coarsening

4. Approximate Matching

Overview

Solve

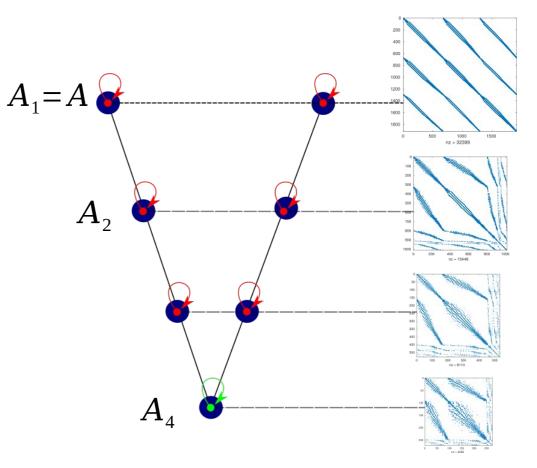
- is massive but sparse
- Need to use cluster/parallel computers
- Solve using Conjugate Gradient (CG) using some preconditioner .
 - Solve

How to compute B?

- B is precomputed.
- Use Algebraic Multigrid Method (AMG)

What is AMG?

- Coarse and Project A
- Use graphs to build the Multigrid Hierarchy.



Contributions

Developed a bi-objective matching framework

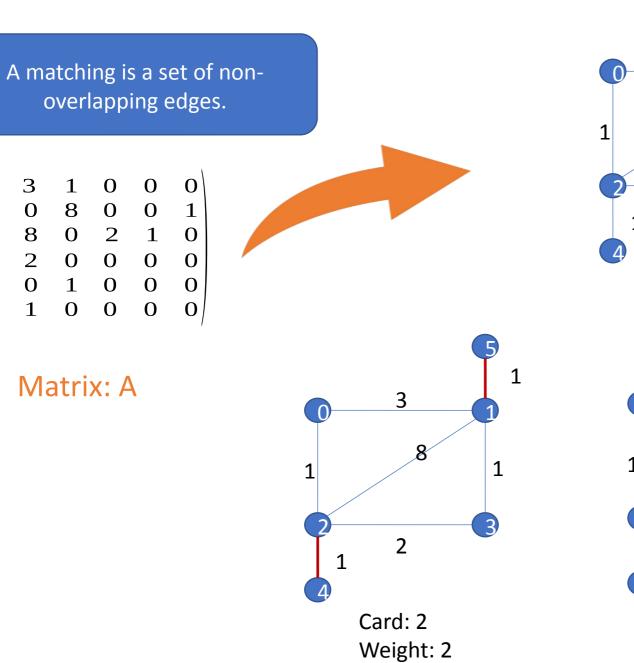
Employed the bi-objective matching to parallel coarsening in AMG

Experimented on solving anisotropic linear system in multiprocessor.

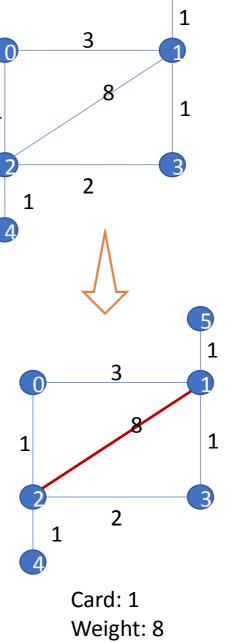
Coarsening

- How to do Coarsening?
 - From Matrix to a graph
 - Coarse using successive graph matching
 - Matching: set of non-overlapping edges in Graph.
 - Each level reduces the size of the matrix
- What would be a "good" coarsening?
 - Reduce the size of the matrix (ideally by half at every level)
 - The reduced matrix should be close to diagonally dominant

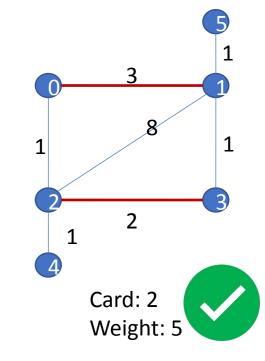
High cardinality



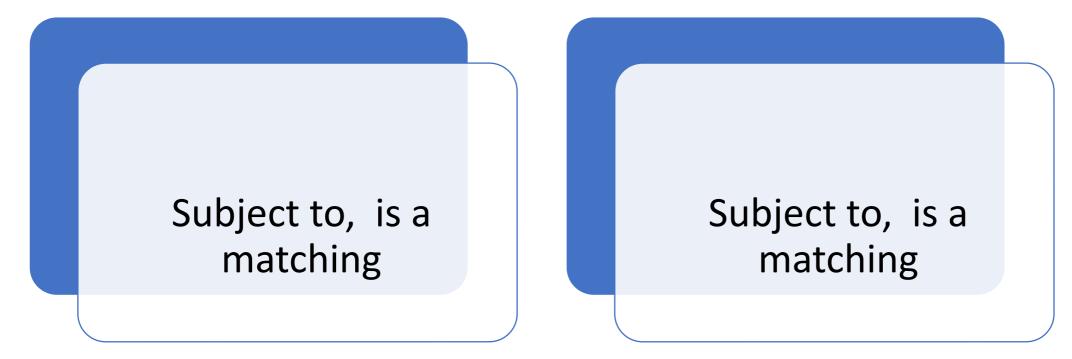
З



Graph: G



A bi-objective matching framework



max weight matching max cardinality matching

is a binary incident vector over edges

Properties of-matching

Pareto Optimality

- Both weights and the cardinality are optimal for a parameter > 0.
- Need to solve matching optimally

is parametric to the desired size of matching

- can be a function of max weight of the graph
- set such that matching has certain cardinality guarantee

Subject to, is a matching

$$\lambda = max \left\{ \frac{k-1}{2} \gamma - \frac{k+1}{2} \delta, \epsilon \right\}$$

Max weight matching where there is no
Augmenting path angth k.
max weight, min weight

From Optimal to Approximate matching

Optimal Matching

- Expensive
- Complicated
- No parallelism

Approximate Matching

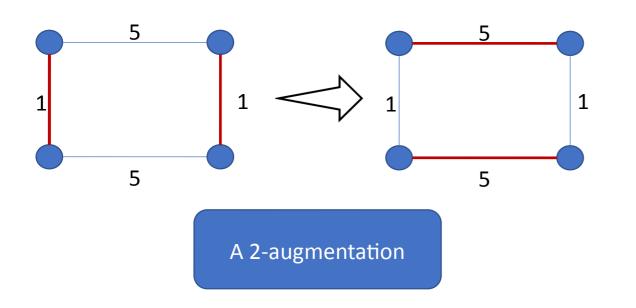
- Fast, easy to implement and often parallel.
- Greedy Algorithm (1/2-approximate)
 - Sort the edges from high to low
 - construct a maximal matching in that order
 - Repeated short augmenting paths from random vertex

The Randomized 2/3-approximate Algorithm*



*Sanders, Peter, and Seth Pettie. "A simpler linear time 2/3-epsilon approximation for maximum weight matching." (2004).

The Randomized 2/3-approximate Algorithm*



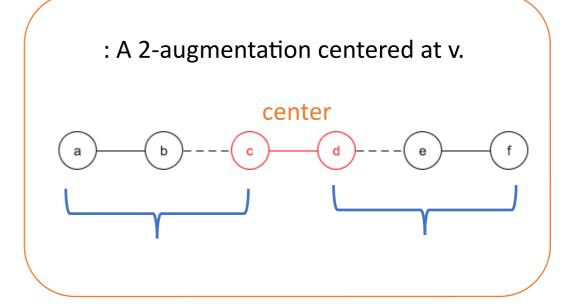
2-augmentation P

- With respect to a matching M
- Weight increasing alternating path
- Number of edges in

*Sanders, Peter, and Seth Pettie. "A simpler linear time 2/3-epsilon approximation for maximum weight matching." (2004).

The Random Order Augmentation Matching Algorithm ROMA*

ROMA(
$$G = (V, E), w : E \to \mathbb{R}^{\geq 0}$$
, int ℓ)
1 $M := \emptyset$ (or initialise M with any matching)
2 for $i := 1$ to ℓ do
3 for each node $v \in V$ in random order do
4 $M := M \oplus \operatorname{aug}(v)$
5 return M



Can also be implemented in a shared memory parallel machine.**

*J. Maue and P. Sanders, "Engineering Algorithms for Approximate Weighted Matching," in *Experimental Algorithms,2007* **A. Berge, "A parallel version of the Random Order Augmentation Matching Algorithm," Master's thesis, University of Bergen, 2020

Experiments

- Metrics
 - Operator Complexity
 - Measure of the memory footprint of the multigrid and estimated cost of a V-cycle
 - Setup time
 - Build time the preconditioner using bi-objective matching
 - Number of iterations
 - Number of iterations of the preconditioned CG solver
 - Solving time
 - Total solution time of preconditioned CG

Problems

- Poisson Benchmark with Axial anisotropy in 2D and 3D
- The boundary value problem

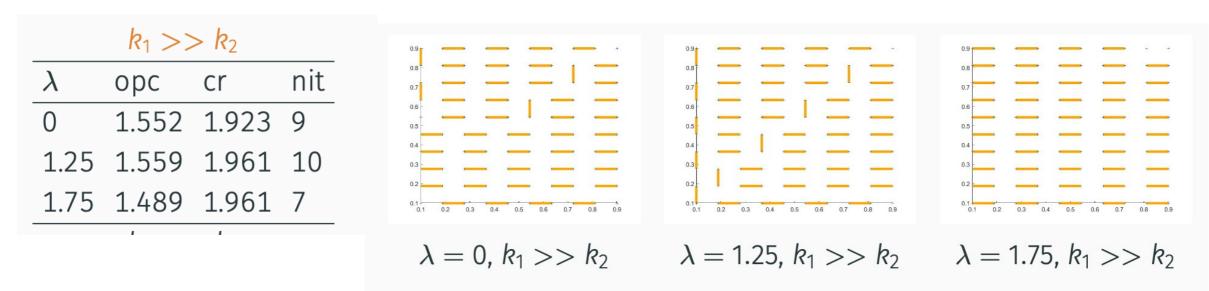
Here,

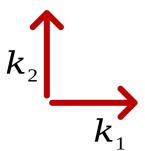
Machine

- CINECA Marconi 100
 - Nodes: 980
 - **Processors:** 2x16 cores IBM POWER9 AC922 at 3.1 GHz
 - Accelerators: 4 x NVIDIA Volta V100 GPUs, Nvlink 2.0, 16GB
 - RAM: 256 GB/node

System	Core	Rmax (PFlop/s)
1. Frontiers	8,730,112	1,102.00
2. Fugaku	7,630,848	442.01
3. Lumi	2,220,288	309.10
24. Marconi	347,776	21.64

Effect of

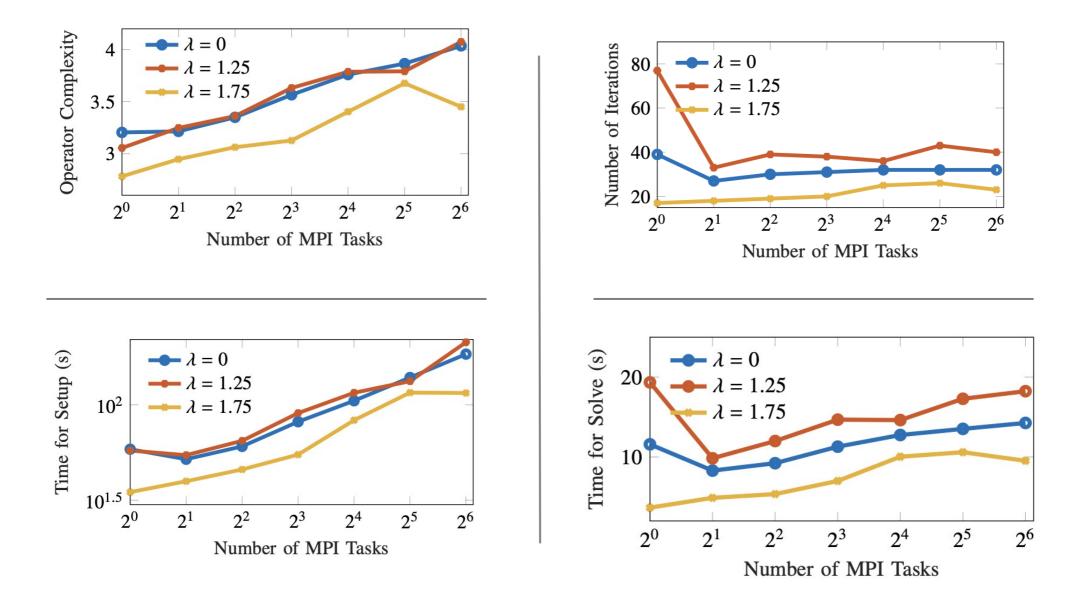




Weak Scaling Analysis

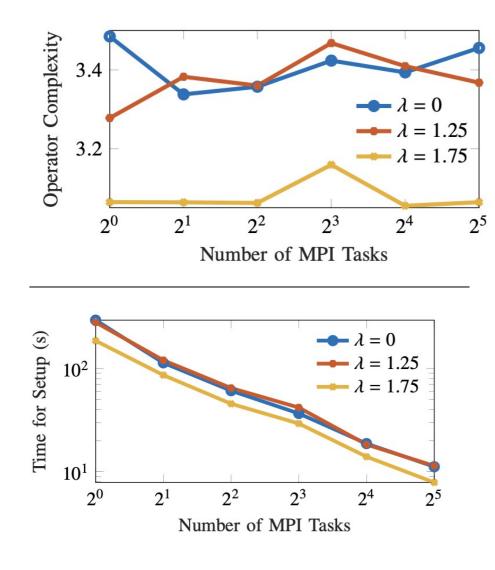
Weak Scaling Setup

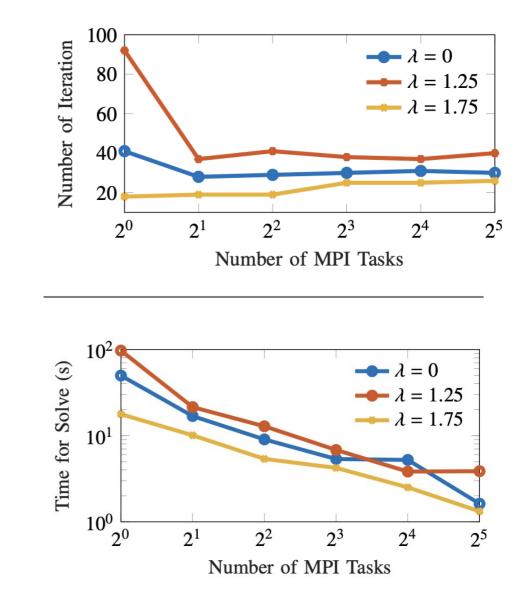
- MPI tasks
- 16 threads per task
- dofs per task
- cores with dofs for the largest problem



Strong Scaling Analysis

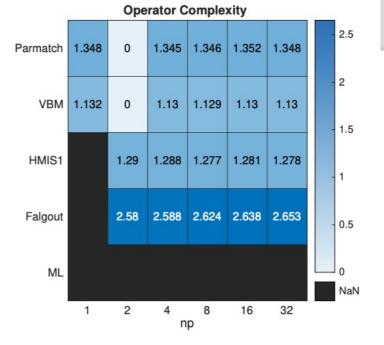
- Setup
 - Number of dofs
 - MPI processes
 - Each task with 16 threads

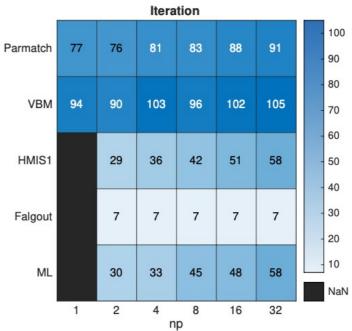


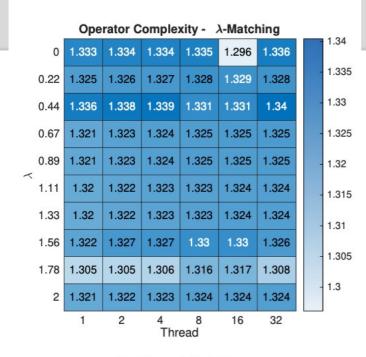


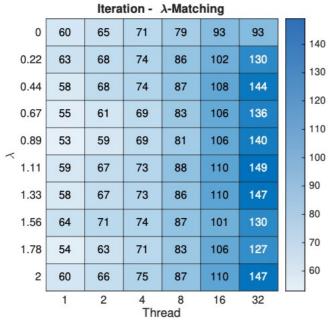
Comparison with other algorithms

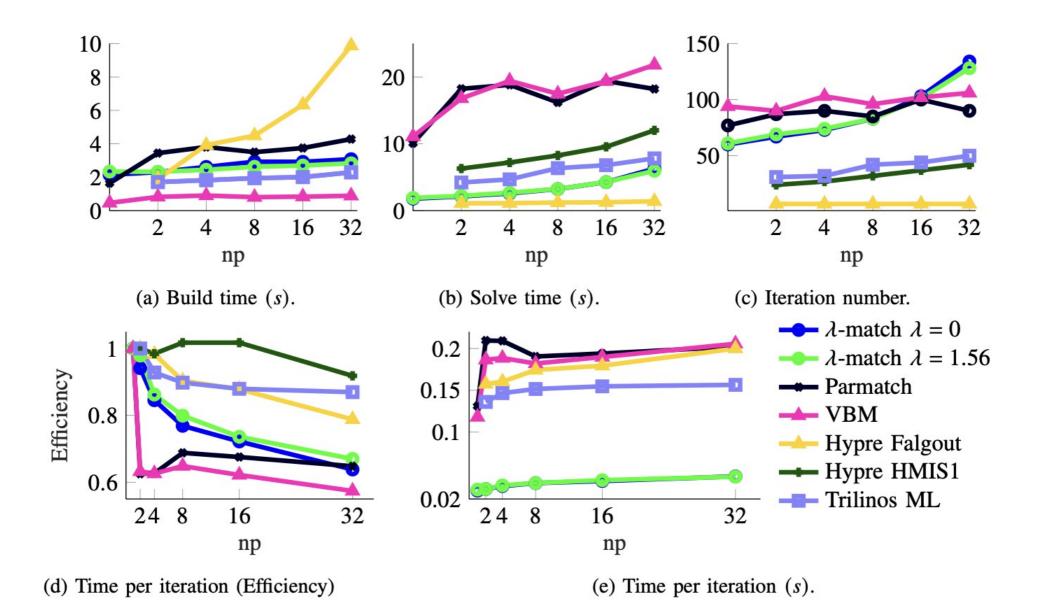
- Benchmark Algorithms
 - Bi-objective Matching (our)
 - Parmatch (greedy matching as aggregator)
 - VBM
 - Falgout
 - HMIS1
 - ML











Thank You!

https://smferdous1.github.io/

sm.ferdous@pnnl.gov