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What we want to solve

Ax = b, A ∈ Rn×n (s.p.d.) x,b ∈ Rn

n large

sparsity degree = 1− nnz

n2
≈ 1

often the most time consuming computational kernel in many areas of
Computational/Data Science

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8
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n large

sparsity degree = 1− nnz

n2
≈ 1

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

The exascale challenge: using computer that do 1015 Flops, targeting next-gen
systems doing 1018 Flops, to solve problems with tens of billions (1012) dofs
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Iterative sparse linear solvers

A matrix is sparse when there are so many zeros (nonzeros are typi-
cally O(n)) that it pays o� to take advantage of them in the computer
representation. James Wilkinson

Methods of choice: Look for an approximate solution by projection:

xm ∈ Km(A, r0)

rm = b−Axm ⊥ Km(A, r0)

Km(A, r0) = Span{r0, Ar0, A2r0, . . . , A
m−1r0}

Krylov subspace (growing with iteration until xm is good enough)

Conjugate Gradient (CG) for s.p.d. matrices (1952)

CG convergence

‖ek‖A
‖e0‖A

≤ 2

(
a− 1

a+ 1

)
, a =

√
κ(A) = λmax/λmin

ek = x− xk error at iteration k, λ eigenvalue of A
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Preconditioning

Solve the system:

BAx = Bb

with B ≈ A−1
(left preconditioner)

such that:

κ(BA) << κ(A)

Solving 2D Poisson eq.
(2500 dofs, κ(A) ≈ 1.5× 103)

IC(0): B = (LLT )−1 with L incompl. Cholesky
factor, κ(BA) ≈ 2.2× 102
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The preconditioned Conjugate Gradient algorithm

1 Given x0 and set r0 = b−Ax0;
2 z0 = Br0;
3 p0 = z0;
4 w0 = Ap0;
5 for i = 1, . . . do
6 αi−1 = rTi−1zi−1/p

T
i−1wi−1;

7 xi = xi−1 + αi−1pi−1;
8 ri = ri−1 − αi−1wi−1;
9 evaluate the stopping criterion;
10 zi = Bri;

11 βi = rTi zi/r
T
i−1zi−1;

12 pi = zi + βipi−1;
13 wi = Api;

14 end

Building blocks

preconditioner application

SpMV operation involving the
original matrix A

dot products

axpy operations

Intrinsic performance limits

BLAS-1 (vector-vector) or BLAS-2 (sparse matrix-vector) operations
Compute intensity = Flops/Bytes = O(1)

Memory (Communication) bound problems
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Where we want to run1

System Cores Rmax HPCG

(PFlops) (PFlops)

1 Frontier 8,730,112 1,102 14
2 Fugaku 7,630,848 442 16
3 LUMI 2,220,288 309 3.4
4 Leonardo 1,463,616 174 2.6
...

...
...

...
24 Marconi-100 347,776 21 0.5
26 Piz Daint 387,872 21 0.5
...

...
...

...
93 Juwels 1 114,480 6.18 0.075

Computers with thousands of CPU cores and GPU
accelerators

Hybrid form of parallelism/programming models:
MPI, OpenMP, CUDA/OpenACC, . . .

Marconi 100 - Cineca

Piz Daint - CSCS

1TOP500 list, November 2022 � https://www.top500.org
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Main issues and challenges

the cost of data movement dominates the cost of �oating-point arithmetic

accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision, �oating-point arithmetic is
available in hardware for fast AI

minimizing energy consumption is important for sustainability of HPC
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more accurate methods with more parallel ones
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accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision, �oating-point arithmetic is
available in hardware for fast AI methods have to be proposed to exploit such
computations within algorithms aiming for higher accuracy

minimizing energy consumption is important for sustainability of HPC
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Main issues and challenges

the cost of data movement dominates the cost of �oating-point arithmetic

accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision, �oating-point arithmetic is
available in hardware for fast AI

minimizing energy consumption is important for sustainability of HPC basic
guideline is reducing elapsed time of HPC applications and integrate energy
consumption information into the algorithms
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the cost of data movement dominates the cost of �oating-point arithmetic

accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision, �oating-point arithmetic is
available in hardware for fast AI

minimizing energy consumption is important for sustainability of HPC

the methods of �approximation mathematics� will have to be changed very
radically in order to use . . .[a computer] sensibly and e�ectively - and to get into

the position of being able to build and use still faster ones
(von Neumann, Letter to Maxwell Newman on 19 March 1946)
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Main issues and challenges

the cost of data movement dominates the cost of �oating-point arithmetic

accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision, �oating-point arithmetic is
available in hardware for fast AI

minimizing energy consumption is important for sustainability of HPC

...the design of numerical algorithms and mathematical software is an
interdisciplinary scienti�c topic with many features of a translational science which

requires a continuous feedback from the applications to the basic research
(J. Dongarra, Journal of Computational Science, 2021)
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EoCoE project

Energy oriented Center of Excellence: toward exascale for energy

applying cutting-edge computational methods to accelerate the transition to the
production, storage and management of clean, decarbonized energy

Wind Materials

Water Fusion

Main aim

prepare selected applications to face the exascale challenge
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EoCoE target applications

Wind Models

Image credits H. Owen and G. Marin, Barcelona

Supercomputing Centre

Navier-Stokes equations,

Euler equations,

Turbulence models,

. . .

Regional Hydrological Models

Darcy equation,

Richards equation,

Equations for overland �ow

. . .

Target dofs: n > 1012, Computing processors: np ≈ 106
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TEXTAROSSA project

Towards EXtreme scale Technologies and Accelerators for euROhpc
hw/Sw Supercomputing Applications for exascale

developing new software tools for high-performance and high-energy e�ciency on
near-future exascale computing systems by multi-directional co-design approach

Our contribution: performance/power e�cient MathLib
P. D'Ambra Scalable Linear Solvers 11 / 24



Parallel Sparse Computation toolkit (psctoolkit.github.io)
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Parallel Sparse Computation toolkit (psctoolkit.github.io)

SPMD programming model; parallel sparse BLAS-1/2/3;
Krylov solvers; algebraic interface with support for mesh
handling and partitioning
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Parallel Sparse Computation toolkit (psctoolkit.github.io)

e�ective handling of large index spaces
and of halo data exchange

(pink area is local, green area is halo)
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Parallel Sparse Computation toolkit (psctoolkit.github.io)

Additional matrix storage formats, interfaces to two
external libraries for sparse BLAS-1/2

on NVIDIA GPUs and on multi-core CPUs
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Parallel Sparse Computation toolkit (psctoolkit.github.io)

a package of parallel
algebraic multigrid preconditioners,

speci�cally designed and implemented
for extreme-scale computations

P. D'Ambra Scalable Linear Solvers 12 / 24



MultiGrid methods

Given A ∈ Rn×n s.p.d., apply B to precondition the CG solver:

if (k 6= nlev) then

xk = xk + (Mk)−1
(
bk −Akxk

)
bk+1 = (P k+1

k )T
(
bk −Akxk

)
xk+1 = V-cycle

(
k + 1, Ak+1, bk+1, 0

)
xk = xk + P k+1xk+1

xk = xk + (Mk)−T
(
bk −Akxk

)
else

xk =
(
Ak
)−1

bk

endif

return xk

end

Smoother

Mk : Rnk → Rnk

�High frequencies�

Prolongator

P k+1
k : Rnk+1 → Rnk

�Low frequencies�

Complementarity of Smoother and Prolongator
P. D'Ambra Scalable Linear Solvers 13 / 24



Algebraic MultiGrid (AMG) methods

Brandt, McCormick and Ruge (1984)

Algebraic MultiGrid methods do not explicitly use the (eventual) problem
geometry but rely only on matrix entries to generate coarse-grids by using

characterizations of algebraic smoothness

Key issue

errors not reduced by the (chosen) smoother (algebraic smoothness):

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

have to be well represented on the coarse grid and
well interpolated back w = (wi) ∈ Range(P k

k+1)
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Scalable (AMG) preconditioners

AMG can be optimal (O(n) �ops) and hence have good scalability potential

Optimal complexity is not su�cient in parallel!

maxi λi(BA) ≈ 1 being independent of n (algorithmic scalability)

in a massively parallel computer, B should be composed of local actions
(implementation scalability)
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Scalable (AMG) preconditioners

AMG can be optimal (O(n) �ops) and hence have good scalability potential
Optimal complexity is not su�cient in parallel!

maxi λi(BA) ≈ 1 being independent of n (algorithmic scalability)
true only for Laplacian and surroundings!

in a massively parallel computer, B should be composed of local actions
(implementation scalability)
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Scalable (AMG) preconditioners

AMG can be optimal (O(n) �ops) and hence have good scalability potential
Optimal complexity is not su�cient in parallel!

maxi λi(BA) ≈ 1 being independent of n (algorithmic scalability)

in a massively parallel computer, B should be composed of local actions
(implementation scalability)
limited by basic BLAS-2 (Sparse Matrix-Vector product) operations and
reduced parallelism on coarser levels

P. D'Ambra Scalable Linear Solvers 15 / 24



AMG setup

Recursive application of a two-grid scheme

setup of a convergent iterative solver M (the smoother)

setup of a coarse vector space Rnc from Rn

build the prolongation P from A

compute coarse grid matrix Ac = PTAP (triple-matrix Galerkin product)

Our recipies: AMG based on aggregation of dofs

Group the dofs into disjoint sets of aggregates Gj ; each aggregate Gj corresponds
to 1 coarse dof

Associated prolongation:

P := Pij =

{
wi if i ∈ Gj

0 otherwise

i = 1, . . . , n, j = 1, . . . , nc,

or smoothed version of P

(Van¥k, Mandel and Brezina 1996).
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Parallel AMG setup: matching-based coupled aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and
a weight (smooth) vector w we consider the weighted
version of G obtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1− 2ai,jwiwj

ai,iw2
i + aj,jw2

j

,

a matchingM is a set of pairwise non-adjacent
edges, containing no loops;

a maximum product matching maximizes the
product of the weights of its edges ei7→j .

P. D'Ambra and P. S. Vassilevski 2013

CMATCH algorithm
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Given a graph G = (V, E) (with adjacency matrix A), and
a weight (smooth) vector w we consider the weighted
version of G obtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1− 2ai,jwiwj

ai,iw2
i + aj,jw2

j

,

a matchingM is a set of pairwise non-adjacent
edges, containing no loops;

a maximum product matching maximizes the
product of the weights of its edges ei7→j .

P. D'Ambra and P. S. Vassilevski 2013

CMATCH algorithm

We divide the index set
into matched vertices
I =

⋃np

i=1 Gi, with
Gi ∩ Gj = ∅ if i 6= j, and
unmatched vertices, i.e.,

ns singletons Gi
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AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and
a weight (smooth) vector w we consider the weighted
version of G obtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1− 2ai,jwiwj

ai,iw2
i + aj,jw2

j

,

a matchingM is a set of pairwise non-adjacent
edges, containing no loops;

a maximum product matching maximizes the
product of the weights of its edges ei7→j .

P. D'Ambra and P. S. Vassilevski 2013

CMATCH algorithm

To increase coarsening
ratio we can perform more

than one sweep of
matching per level
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Parallel AMG setup: matching-based coupled aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and
a weight (smooth) vector w we consider the weighted
version of G obtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1− 2ai,jwiwj

ai,iw2
i + aj,jw2

j

,

a matchingM is a set of pairwise non-adjacent
edges, containing no loops;

a maximum product matching maximizes the
product of the weights of its edges ei7→j .

P. D'Ambra and P. S. Vassilevski 2013

CMATCH algorithm

To increase regularity of
P ll+1 we can consider a
smoothed prolongator by
applying one step of

Jacobi method
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Parallel AMG setup: matching-based coupled aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and
a weight (smooth) vector w we consider the weighted
version of G obtained by considering the weight matrix Â:

(Â)i,j = âi,j = 1− 2ai,jwiwj

ai,iw2
i + aj,jw2

j

,

a matchingM is a set of pairwise non-adjacent
edges, containing no loops;

a maximum product matching maximizes the
product of the weights of its edges ei7→j .

P. D'Ambra and P. S. Vassilevski 2013

CMATCH algorithm

Main building block: parallel approximated matching

sub-optimal algorithms with quality guarantee of the computed matching and
linear-time O(nnz) complexity. Available software: MatchBox-P by Halappanavar
et al.
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Highly parallel smoothers: our recipies

Gauss-Seidel (GS): A = L+D + U , where
D = diag(A), L = tril(A) and U = triu(A)

the smoother is M = (L+D)−1U ,
It is intrinsically sequential!

Inexact block-Jacobi (HGS/weighted-Jacobi)

On process p, App = Lpp +Dpp + Upp

where Dpp = diag(App), Lpp = tril(App), Upp = triu(App)
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Highly parallel smoothers: our recipies

Inexact block-Jacobi (HGS/weighted-Jacobi)

On process p, App = Lpp +Dpp + Upp

where Dpp = diag(App), Lpp = tril(App), Upp = triu(App)
HGS: the smoother is

M = blockdiag(Mpp), with Mpp = (Lpp +Dpp)−1Upp
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Highly parallel smoothers: our recipies

Inexact block-Jacobi (HGS/weighted-Jacobi)

On process p, App = Lpp +Dpp + Upp

where Dpp = diag(App), Lpp = tril(App), Upp = triu(App)
weighted Jacobi: the smoother is

M = blockdiag(D−1pp )
worst smoothing properties but very suitable for GPUs
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Test case: Poisson equation (as in HPCG)

−∆u = 1 on unit cube, with DBC

7-point �nite-di�erence discretization

cartesian grid with uniform re�nement along the coordinates for increasing
mesh size

Solver/preconditioner settings

AMG as preconditioner of CG, stopped when ‖rk‖2/‖b‖2 ≤ 10−6, or
itmax = 500

VSCMATCH V-cycle, CMATCH building aggregates of max size 8,
smoothed prolongators

coarsest matrix size nc ≤ 200np, with np number of cores

1 sweep of forward/backward Hybrid Gauss-Seidel smoother (4 sweeps of
weighted-Jacobi on GPU), parallel PCG coupled with Block-Jacobi+ILU(0)
at the coarsest level.

Platform: Piz Daint, Cray Model XC40/Cray XC50 with 5704 hybrid compute
nodes (Intel Xeon E5-2690 v3 with Nvidia Tesla P100)
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Results at extreme scale: MPI vs hybrid MPI-CUDA

105 106 107 108 109 1010 1011
10−1

100

101

1

2 4
8 16

32 64128256
512

1024

2048

4096

8192

16384

27000

1

2
4

8
16

32
64

128
256512

1024

2048

dofs

Execution Time for Solve (sec.)

6M dof x GPU 3M dof x GPU 256k dof x MPI core

512k dof x MPI core 1M dof x MPI core
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1
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4

8
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128
256512

1024

2048

dofs

Execution Time for Solve (sec.)

6M dof x GPU 3M dof x GPU 256k dof x MPI core

512k dof x MPI core 1M dof x MPI core

Performance/Power e�ciency

the hybrid approach permits savings in solve time and energy consumption
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A CFD application inside Alya

Joint work with
Herbert Owen

Barcelona Super Computing Center

Bolund is an isolated hill situated in
Roskilde Fjord, Denmark. An almost
vertical escarpment in the prevailing

W-SW sector ensures �ow separation in
the windward edge resulting in a

complex �ow �eld.

Model: 3D incompressible unsteady
Navier-Stokes equations for Large Eddy
Simulations of turbulent �ows Reτ = 107

Discretization: low-dissipation mixed FEM
(linear FEM both for velocity and pressure)

Time-Stepping: non-incremental
fractional-step for pressure, explicit fourth
order Runge-Kutta method for velocity
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Bolund test case - weak scaling on Juwels (JSC) - pressure
equation

�xed size problem per CPU core ≈ 105 dofs up to 2.9× 109 dofs
20 time steps in the fully development �ow phase

PSCToolkit solver largely reduces the total number of iterations
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Bolund test case - weak scaling on Juwels (JSC) - pressure
equation

�xed size problem per CPU core ≈ 105 dofs up to 2.9× 109 dofs
20 time steps in the fully development �ow phase

PSCToolkit improves algorithmic and implementation scalability of Alya
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Concluding remarks and work in progress

PSCToolkit is a software project addressing scalability, �exibility and
robusteness for high-performance scienti�c computing at extreme scale

our new parallel CMATCH aggregation shows algorithmic and
implementation scalability

we solve systems with size larger than 1010 on hybrid pre-exascale computers
saving time and energy; comparison with available software demonstrates the
validity of our approaches

integration and testing within very large scale wind simulations and hydrology
applications, in collaborations with BSC and JSC, gave very promising results

we want to explore extreme scalability beyond 105/106 computing cores and
trillions (1012) of dofs with early access grant to Leonardo also testing
on-going work on CA-Krylov solvers and mixed-precision AMG preconditioners
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