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Parallel Sparse Computation Toolkit (psctoolkit.github.io)

recognized as “Excellent Science Innovation”
by the EU Innovation Radar
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Parallel Sparse Computation Toolkit (psctoolkit.github.io)

parallel sparse BLAS-1/2/3, Krylov solvers,
algebraic interface with support for mesh handling
and partitioning, effective handling of large index
spaces for dealing with billions of dofs and of halo
data exchange
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parallel sparse BLAS-1/2/3, Krylov solvers,
algebraic interface with support for mesh handling
and partitioning, effective handling of large index
spaces for dealing with billions of dofs and of halo
data exchange

additional matrix storage formats, interfaces to two
external libraries for sparse BLAS-1/2
on GPUs and on multi-core CPUs

parallel algebraic multigrid (AMG) preconditioners,
specifically designed for extreme scalability
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MultiGrid methods

V-cycle
(
l , nlev ,Al , bl , x l

)
if (l 6= nlev) then

x l = x l + (M l)−1
(
bl − Alx l

)
bl+1 = (P l)T

(
bl − Alx l

)
x l+1 = V-cycle

(
l + 1,Al+1, bl+1, 0

)
x l = x l + P lx l+1

x l = x l + (M l)−T
(
bl − Alx l

)
else

x l =
(
Al
)−1

bl

endif

return x l

end
Smoother

M l : Rnl → Rnl

“damping high frequencies”

Prolongator

P l : Rnl+1 → Rnl

“transferring low frequencies”
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Algebraic MultiGrid (Brandt, McCormick and Ruge, 1984)

Algebraic MultiGrid methods do not explicitly use the (eventual) problem
geometry but rely only on matrix entries to generate coarse-grids by using

characterizations of algebraic smoothness

Key issue

errors not reduced by the (chosen) smoother (algebraic smoothness)

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

have to be well represented on the coarse grid and
well interpolated back w = (wi ) ∈ Range(P l)
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MultiGrid Convergence

Theorem (McCormick 1985, Vassilevski 2008)

If M l is a contraction at each level l , i.e., ‖I − (M l)−1Al‖Al < 1, the V-cycle
preconditioner B defined as the multiplicative composition of the iteration matrix:

I − (B l)−1Al = (I − (M l)−TAl)(I − P l((P l)TAlP l)−1(P l)TAl)(I − (M l)−1Al)

has the following error bound:

‖E‖2
A = ‖I − B−1A‖2

A ≤ 1− 1

C
with

C = maxlC
l

where C l = supv∈Range(P l )⊥A\0
‖v‖2

M̃l

‖v‖2
A
≥ 1 is the approximation constant and

M̃ l = M l(M l + (M l)T − Al)−1(M l)T is the symmetrized smoother.
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Optimal Convergence (independent of problem size and number of levels)
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MultiGrid Convergence

Theorem (McCormick 1985, Vassilevski 2008)

If M l is a contraction at each level l , i.e., ‖I − (M l)−1Al‖Al < 1, the V-cycle
preconditioner B defined as the multiplicative composition of the iteration matrix:
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has the following error bound:
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A = ‖I − B−1A‖2

A ≤ 1− 1

C
with

C = maxlC
l

where C l = supv∈Range(P l )⊥A\0
‖v‖2

M̃l

‖v‖2
A
≥ 1 is the approximation constant and

M̃ l = M l(M l + (M l)T − Al)−1(M l)T is the symmetrized smoother.

The smaller the approximation constant at each level the smaller the error!
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Scalable (AMG) preconditioners

(courtesy of Rob Falgout)

‖E‖2
A < 1 being independent of n (algorithmic scalability)

true only for Laplacian and surroundings!

B should be composed of local actions essentially based on a
“hierarchy” of sparse matrix-vector products (implementation
scalability)
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Parallel Smoothers

Let M be the spd (convergent) `1−Jacobi smoother:

G = (I −M−1A),
M = diag(Mii )i=1,...,n

Mii = aii +
∑

j 6=i |aij |

Pros: simple and cheap to setup, only based on sparse
matrix-vector product and local vector updates well suited
for high-throughput SIMD processors

Cons: larger approximation constant than parallel (hybrid)
Gauss-Seidel iterations (in our AMG setting the constant is
larger of a factor about 4 for homogeneous 3D Poisson
problem)
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Parallel Smoothers

Some results on Piz Daint: MPI-HGS vs MPI/GPU-l1Jac
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the hybrid approach permits up to ≈ 50% savings in

solve time and energy consumption for 10 billion dofs
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Parallel Smoothers

Polynomial accelerators (Adams et al. 2003, Kraus et al. 2012)

G = pk((M l)−1Al), for pk(x) ∈ Πk [x ]

s.t. pk(0) = 1 and |pk(x)| < 1 for 0 < x ≤ 1

Key issue: choose polynomials to optimize V-cycle approximation constant
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V-cycle Convergence & Polynomial Smoothers

Let G = (I − (M l)−1Al) be the error propagation matrix of an spd
smoother M l such that ρ((M l)−1Al) ≤ 1, let be G = pk((M l)−1Al), for
pk(x) ∈ Πk [x ] s.t. pk(0) = 1 and |pk(x)| < 1 for 0 < x ≤ 1.

Theorem (Lottes, 2023)

The V -cycle error propagation matrix has following bound:

‖E‖2
A ≤ maxl

C l

C l + (γ lk)−1
,

where C l is the approximation property constant at the level l and

γ lk = sup
0<λ≤1

λpk(λ)2

1− pk(λ)2
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γ lk depends only on the polynomials
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C l + (γ lk)−1
,

where C l is the approximation property constant at the level l and

γ lk = sup
0<λ≤1

λpk(λ)2

1− pk(λ)2

the smaller γ l at each level the smaller the error!
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γ bounds & 4th-kind Chebyshev polynomials

Minimax problem

γk := min
pk (x)∈Πk

max
x∈(0,1]

∣∣∣∣ xpk(x)2

1− pk(x)2

∣∣∣∣
s.t. pk(0) = 1 and |pk(x)| < 1 for 0 < x ≤ 1
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γ bounds & 4th-kind Chebyshev polynomials

Quasi-optimal 4th-kind Chebyshev polynomials (Lottes 2023)

Wk(x) =
sin(k + 1/2)θ

sin(θ/2)
, k ≥ 0, x = cos(θ),

Wk(x) = argminpk (x)∈Πk
maxx∈(0,1]

∣∣xpk(x)2
∣∣ and γk = 1

4/3k(k+1)

no information about spectra of matrices are needed

can be applied as a simple 3-terms recurrence requiring sparse
matrix-vector products and vector updates
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γ bounds & 4th-kind Chebyshev polynomials
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γ bounds & 4th-kind Chebyshev polynomials

Approximate optimal 4th-kind Chebyshev polynomials (Lottes 2023)

pk(x) =
k∑

j=0

βj ,k − βj+1,k

2j + 1
Wj(1− 2x),

β0,k = 1, βk+1,k = 0 ∀k ≥ 0.

pk(x) improves the quasi-optimal bound: γk ≈ 1
4/π2(2k+1)2−2/3

for

sufficiently large k

coefficients βj ,k can be computed by Newton’s method applied to a
system of non-linear eq.
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γ bounds & 4th-kind Chebyshev polynomials
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γ bounds & 1st-kind Chebyshev polynomials

Rewriting the minimax problem

γk = min
pk (x)∈Πk

max
x∈(0,1]

x

∣∣∣∣1− 1

1− pk(x)2

∣∣∣∣ ,
s.t. pk(0) = 1 and |pk(x)| < 1 for 0 < x ≤ 1
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1− pk(x)2
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s.t. pk(0) = 1 and |pk(x)| < 1 for 0 < x ≤ 1

Quasi-Optimal 1st-kind Chebyshev polynomials

τk(x) =
1

2

[
(x +

√
x2 − 1)k + (x −

√
x2 − 1)k

]
τk(x) provides the optimal solution in the interval [ak , 1], for any
ak ∈ (0, 1)

optimal values of ak and corresponding γk can be numerically
obtained by solving a scalar non-linear equation

can be applied as a simple 3-terms recurrence requiring sparse
matrix-vector products and vector updates
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γ bounds & 1st-kind Chebyshev polynomials

Theorem (PD, Durastante, Massei, Filippone, Thomas, 2024)

Let a∗k ∈ (0, 1) be such that

max
x∈(0,1]

x

∣∣∣∣∣1− 1

1− τ [a∗k ,1]

k (x)2

∣∣∣∣∣ = γk .

If k ≥ 3, then

log(k)2

9k2
≤ a∗k ≤

log(k)2

k2
, and

log(k)

6k2
≤ γk ≤ 1.03

log(k)

2k2
.
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γ bounds & 1st-kind Chebyshev polynomials
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γ bounds & 1st-kind Chebyshev polynomials
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γ bounds
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Test case: Poisson equation

−∆u = 1 on unit cube, with DBC

Solver/preconditioner settings

AMG as preconditioner of CG, stopped when ‖rk‖2/‖b‖2 ≤ 10−7, or
itmax = 500

VSMATCH V-cycle for matching-based coarsening with aggregates
of max size 8, smoothed prolongators

coarsest matrix size nc ≤ 200np, with np number of tasks (GPUs)

`1-Jacobi iterations, quasi-opt. 4th-kind Cheb., approximate opt.
4th-kind Chebyshev and quasi opt. 1st-kind Cheb. accelerations; 30
iterations of `1-Jacobi at the coarsest level.

Platform: Leonardo booster, ranked 6th in the last Top500 list (BullSequana
XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB,
Quad-rail NVIDIA HDR100 Infiniband)
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Results:Iterations
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Results:Time per Iteration
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Results: Solve Time
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Concluding remarks and work in progress

PSCToolkit is a software project addressing extreme scalability for
scientific computing on heterogeneous architectures

new GPU supports for polynomial smoothers have been included in
PSCToolkit and demonstrate benefits in solving benchmark systems
up to 6 billion dofs on up to 1024 GPUs of the Leonardo
supercomputer

applications to systems arising from CFD for sustainable energy are
work in progress (Fabio’s talk, @MS13, last Monday morning)
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