AMG Preconditioners for Computational and Data Science at Extreme Scale

Pasqua D'Ambra

Institute for Applied Computing of the National Research Council (IAC-CNR), Naples, IT pasqua.dambra@cnr.it

Calcolo Scientifico e Modelli Matematici

April 6-8, 2022

The HPC Team at

Projects Participants :

- Massimo Bernaschi (IAC-CNR), IT
- Salvatore Filippone (Univ. of Rome Tor-Vergata and IAC-CNR), IT
- Fabio Durastante (Univ. of Pisa and IAC-CNR), IT
- Mauro Carrozzo (IAC-CNR), IT
- Alessandro Celestini (IAC-CNR), IT
- Gabriele Salvati (IAC-CNR), IT
- Daniele Bertaccini (Univ. of Rome Tor-Vergata and IAC-CNR), IT

Collaborations :

Mahantesh M. Halappanavar, PNNL (Richland, WA), USA Panayot S. Vassilevski, Portland State University (Portland, OR), USA

Ludmil Zikatanov, The Penn State University, PSU (State College), USA

What we want to solve

$$A\mathbf{x} = \mathbf{b}, \quad A \in \mathcal{R}^{n \times n} \text{ (s.p.d.) } \mathbf{x}, \mathbf{b} \in \mathcal{R}^n$$

 $n \text{ large}$
sparsity degree $= 1 - \frac{nnz}{n^2} \approx 1$

often the most time consuming computational kernel in many areas of Computational/Data Science

0.5

3

2.5

× 10⁶

nz = 18816513

イロト イロト イヨト イヨト

イロン イ団 と イヨン イヨン

 $A\mathbf{x} = \mathbf{b}, \quad A \in \mathcal{R}^{n \times n} \text{ (s.p.d.) } \mathbf{x}, \mathbf{b} \in \mathcal{R}^n$ n large

sparsity degree
$$= 1 - \frac{nnz}{n^2} \approx 1$$

The exascale challenge: using computer that do 10^{15} Flops, targeting next-gen systems doing 10^{18} Flops, to solve problems with tens of billions (10^{12}) dofs

	System	Cores	Rmax (TFlops/s)
1	Fugaku	7,630,848	442,010.0
2	Summit	2,414,592	148,600.0
3	Sierra	1,572,480	94,640.0
:			
18	Marconi-100	347,776	21,640.0
20	Piz Daint	387,872	21,230.0
:			
74	MareNostrum	153,216	6,470.8

Marconi 100 - Cineca

- Computers with thousands of CPU cores and GPU accelerators
- Hybrid form of parallelism/programming models: MPI, OpenMP, CUDA/OpenCL/OpenACC, ...

Piz Daint - CSCS

イロト イボト イヨト イヨト

¹TOP500 list, November 2021 - https://www.top500.org

P. D'Ambra

Main issues and challenges

- the cost of data movement dominates the cost of floating-point arithmetic
- accelerators (GPUs, FPGAs, ...) can run at very high throughput exploiting high levels of data parallelism
- accelerators work very fast on low precision floating-point arithmetic
- minimizing energy consumption is important for sustainability of HPC

イロン イ団 と イヨン イヨン

Main issues and challenges

- the cost of data movement dominates the cost of floating-point arithmetic
- accelerators (GPUs, FPGAs, ...) can run at very high throughput exploiting high levels of data parallelism
- accelerators work very fast on low precision floating-point arithmetic
- minimizing energy consumption is important for sustainability of HPC

New Mathematics, new algorithms

and new software development tools are needed

<ロ> <四> <ヨ> <ヨ>

Main issues and challenges

- the cost of data movement dominates the cost of floating-point arithmetic
- accelerators (GPUs, FPGAs, ...) can run at very high throughput exploiting high levels of data parallelism
- accelerators work very fast on low precision floating-point arithmetic
- minimizing energy consumption is important for sustainability of HPC

Il software matematico: le sfide della ricerca sui supercalcolatori

Home > Cultura E Società Digitali

f in 🄰 🖬 👄 👼

Il software matematico è alla base della simulazione computazionale applicata nei più diversi settori, dalla fluidodinamica all'Intelligenza Artificiale, ed è determinante per lo sviluppo dei supercalcolatori. Cos'è, come funziona, storia, strumenti e metodologie

25 Feb 2022

Pasqua D'Ambra CNR. IAC. CINI HPC-KTT

Salvatore Filippone

università di Roma "Tor-Vergata" , CINI HPC-KTT

(日) (四) (王) (王) (王)

EoCoE project

Energy oriented Center of Excellence: toward exascale for energy

applying cutting-edge computational methods to accelerate the transition to the production, storage and management of clean, decarbonized energy

Wind

Water

Materials

Fusion

Main aim

prepare selected applications to face the exascale challenge

P. D'Ambra

EoCoE target applications

Wind Models

Image credits H. Owen and G. Marin, Barcelona Supercomputing Centre

- Navier-Stokes equations,
- Euler equations,
- Turbulence models,

Regional Hydrological Models

- Darcy equation,
- Richards equation,
- Equations for overland flow

イロト イヨト イヨト イヨト

Target DoFs: $n>10^{12},$ Computing processes: $np\approx 10^6$

. . .

P. D'Ambra

TEXTAROSSA project

Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale

developing new software tools for high-performance and high-energy efficiency on near-future exascale computing systems by multi-directional co-design approach

Our contribution: performance/power efficient MathLib

-	-			
Р.	D	A	mt) ra

Scalable AMG

Parallel Sparse Computation Toolkit

AMG4PSBLAS: AMG Preconditioners for PSBLAS

A software development project started in late 2007

- initially developed as a package of algebraic multigrid Schwarz preconditioners, extended to more general AMG preconditioners
- object-oriented design in Fortran 2003/2008, layered sw architecture on top of PSBLAS
 - \implies modularity and flexibility
- clear separation between interface and implementation of methods
 performance and extensibility (e.g., works transparently on GPUs)
- separated users' interface for setup of the multigrid hierarchy and setup of the smoothers and solvers to have large flexibility at each level

P. D'Ambra et al., MLD2P4: a Package of Parallel Algebraic Multilevel Domain Decomposition Preconditioners in Fortran 95, ACM TOMS, 37, 3, 2010

イロン イ団 と イヨン イヨン

AMG Methods

Example: symmetric V-cycle

procedure V-cycle $(k, nlev, A^k, b^k, x^k)$ if $(k \neq nlev)$ then $x^k = x^k + (M^k)^{-1}(b^k - A^k x^k)$ $b^{k+1} = (P^{k+1})^T (b^k - A^k x^k)$ $x^{k+1} = V$ -cycle $(k + 1, A^{k+1}, b^{k+1}, 0)$ $x^k = x^k + P^{k+1} x^{k+1}$ $x^k = x^k + (M^k)^{-T} (b^k - A^k x^k)$ else

$$x^k = (A^k)^{-1}b$$

and if

retı end

・ロト ・四ト ・ヨト ・ヨト

AMG methods do not explicitly use the problem geometry and rely only on matrix entries to generate coarse grids (setup phase)

э

(Two-grid) Convergence

Theorem

(Falgout and Vassilevski, 2004) The two-grid preconditioner B_{TG} defined from the iteration matrix:

$$I - B_{TG}^{-1}A = (I - M^{-1}A)(I - P(P^{T}AP)^{-1}P^{T}A)(I - M^{-T}A)$$

is spectrally equivalent to A and the following estimate holds:

$$v^{T}Av \leq v^{T}B_{TG}v \leq K_{TG}v^{T}Av, \text{ with}$$
$$K_{TG} = sup_{v \in \mathcal{R}^{n} \setminus 0} \frac{v^{T}\tilde{M}(I - \pi_{\tilde{M}})v}{v^{T}Av},$$

where $\tilde{M} = M(M + M^T - A)^{-1}M^T$ is the symmetrized smoother and $\pi_{\tilde{M}} = P(P^T \tilde{M} P)^{-1}P^T \tilde{M}$ is the \tilde{M} -based projection.

イロン イロン イヨン イヨン

(Two-grid) Convergence

Theorem

(Falgout and Vassilevski, 2004) The two-grid preconditioner B_{TG} defined from the iteration matrix:

$$I - B_{TG}^{-1}A = (I - M^{-1}A)(I - P(P^{T}AP)^{-1}P^{T}A)(I - M^{-T}A)$$

is spectrally equivalent to A and the following estimate holds:

$$v^{T}Av \leq v^{T}B_{TG}v \leq K_{TG}v^{T}Av, \text{ with}$$
$$K_{TG} = sup_{v \in \mathcal{R}^{n} \setminus 0} \frac{v^{T}\tilde{M}(I - \pi_{\tilde{M}})v}{v^{T}Av},$$

where $\tilde{M} = M(M + M^T - A)^{-1}M^T$ is the symmetrized smoother and $\pi_{\tilde{M}} = P(P^T \tilde{M} P)^{-1}P^T \tilde{M}$ is the \tilde{M} -based projection.

Ideal prolongator

Assume that R and S form an orthogonal decomposition of \mathcal{R}^n , i.e., RS = 0, and P is such that PR is a projection onto $\mathcal{R}ange(P)$, the best constant is $K^* = (\lambda_{\min}((S^T \tilde{M}S)^{-1}S^T AS))^{-1} \text{ and the corresponding minimizer is}$ $P^* = (I - S(S^T AS)^{-1}S^T A)R^T$

Scalable preconditioners

Solve the system:

$$BAx = Bb,$$

with matrix $B \approx A^{-1}$ (left preconditioner) such that:

- $\max_i \lambda_i(B^{-1}A) \approx 1$ being independent of n (algorithmic scalability)
- the action of B costs as little as possible, the best being $\mathcal{O}(n)$ flops (linear complexity)
- in a massively parallel computer, *B* should be composed of local actions, (implementation scalability, i.e., performance linearly proportional to the number of processors employed)

< 日 > < 四 > < 臣 > < 臣 > 、

Scalable preconditioners

Solve the system:

$$BAx = Bb,$$

with matrix $B \approx A^{-1}$ (left preconditioner) such that:

- $\max_i \lambda_i(B^{-1}A) \approx 1$ being independent of n (algorithmic scalability)
- the action of B costs as little as possible, the best being $\mathcal{O}(n)$ flops (linear complexity)
- in a massively parallel computer, *B* should be composed of local actions, (implementation scalability, i.e., performance linearly proportional to the number of processors employed)

MultiGrid performance parameters

- convergence rate $\rho < 1$: affects number of solver iterations
- operator complexity $opc = \frac{\sum_{k=0}^{nlev-1} nnz(A^k)}{nnz(A^0)}$: affects memory requirements and cycle time
- average stencil size $s(A^k) = nnz_row(A^k)$: affects computation and communication both in setup and in cycle time

Our recipies: CMATCH parallel coarsening

Let $\mathbf{w} \in \mathcal{R}^n$ smooth vector, let $P_c \in \mathcal{R}^{n \times n_c}$ and $P_f \in \mathcal{R}^{n \times n_f}$ be a prolongator and a complementary prolongator, such that:

$$\mathcal{R}^n = \mathcal{R}ange(P_c) \oplus^{\perp} \mathcal{R}ange(P_f), \quad n = n_c + n_f$$

 $\mathbf{w} \in \mathcal{R}ange(P_c)$: coarse space $\mathcal{R}ange(P_f)$: complementary space

$$[P_c, P_f]^T A[P_c, P_f] = \begin{pmatrix} P_c^T A P_c & P_c^T A P_f \\ P_f^T A P_c & P_f^T A P_f \end{pmatrix} = \begin{pmatrix} A_c & A_{cf} \\ A_{fc} & A_f \end{pmatrix}$$

 A_c : coarse matrix A_f : hierarchical complement

《曰》《圖》《臣》《臣》

Our recipies: CMATCH parallel coarsening

Let $\mathbf{w} \in \mathcal{R}^n$ smooth vector, let $P_c \in \mathcal{R}^{n \times n_c}$ and $P_f \in \mathcal{R}^{n \times n_f}$ be a prolongator and a complementary prolongator, such that:

$$\mathcal{R}^n = \mathcal{R}ange(P_c) \oplus^{\perp} \mathcal{R}ange(P_f), \quad n = n_c + n_f$$

 $\mathbf{w} \in \mathcal{R}ange(P_c):$ coarse space $\mathcal{R}ange(P_f):$ complementary space

$$[P_c, P_f]^T A[P_c, P_f] = \begin{pmatrix} P_c^T A P_c & P_c^T A P_f \\ P_f^T A P_c & P_f^T A P_f \end{pmatrix} = \begin{pmatrix} A_c & A_{cf} \\ A_{fc} & A_f \end{pmatrix}$$

 A_c : coarse matrix A_f : hierarchical complement

Efficient coarsening (Falgout and Vassilevski, 2004)

Good convergence rate of compatible relaxation: $\rho_f = \|I - M_f^{-1}A_f\|_{A_f} \ll 1$ with $M_f = P_f^T M P_f$

イロト イヨト イヨト イヨト

Our recipies: CMATCH parallel coarsening

Let $\mathbf{w} \in \mathcal{R}^n$ smooth vector, let $P_c \in \mathcal{R}^{n \times n_c}$ and $P_f \in \mathcal{R}^{n \times n_f}$ be a prolongator and a complementary prolongator, such that:

$$\mathcal{R}^n = \mathcal{R}ange(P_c) \oplus^{\perp} \mathcal{R}ange(P_f), \quad n = n_c + n_f$$

 $\mathbf{w} \in \mathcal{R}ange(P_c):$ coarse space $\mathcal{R}ange(P_f):$ complementary space

$$[P_c, P_f]^T A[P_c, P_f] = \begin{pmatrix} P_c^T A P_c & P_c^T A P_f \\ P_f^T A P_c & P_f^T A P_f \end{pmatrix} = \begin{pmatrix} A_c & A_{cf} \\ A_{fc} & A_f \end{pmatrix}$$

 A_c : coarse matrix A_f : hierarchical complement

Efficient coarsening (Falgout and Vassilevski, 2004)

Good convergence rate of compatible relaxation: $\rho_f = \|I - M_f^{-1}A_f\|_{A_f} \ll 1$ with $M_f = P_f^T M P_f$

Our idea (D'Ambra et al., 2013, 2016, 2018)

build P_c (and P_f) by dofs aggregation based on matching in the weighted (adjacency) graph of A, to make A_f as diagonally-dominant as possible

Weighted graph matching

Given an (undirected) graph $G = (\mathcal{V}, \mathcal{E})$ (with adjacency matrix A), and a weight (smooth) vector \mathbf{w} we consider the weighted version of G with weight matrix \hat{A} :

$$(\hat{A})_{i,j} = \hat{a}_{i,j} = 1 - \frac{2a_{i,j}w_iw_j}{a_{i,i}w_i^2 + a_{j,j}w_j^2}$$

- a matching *M* is a set of pairwise non-adjacent edges
- a maximum weight matching maximizes the sum of the weights of its edges e_{i→j}

《口》《聞》《臣》《臣》

Weighted graph matching

Given an (undirected) graph $G = (\mathcal{V}, \mathcal{E})$ (with adjacency matrix A), and a weight (smooth) vector \mathbf{w} we consider the weighted version of G with weight matrix \hat{A} :

$$(\hat{A})_{i,j} = \hat{a}_{i,j} = 1 - \frac{2a_{i,j}w_iw_j}{a_{i,i}w_i^2 + a_{j,j}w_j^2}$$

- a matching *M* is a set of pairwise non-adjacent edges
- a maximum weight matching maximizes the sum of the weights of its edges e_{i→j}

We divide the index set into matched vertices $\mathcal{I} = \bigcup_{i=1}^{n_p} \mathcal{G}_i$, with $\mathcal{G}_i \cap \mathcal{G}_j = \emptyset$ if $i \neq j$, and (possible) unmatched vertices, i.e., n_s singletons G_i

From the matching to the prolongator

We can formally define a *prolongator*.

$$P_{c} = \begin{bmatrix} \mathbf{w}_{e_{1}} & 0 & 0 \\ 0 & 0 \\ 0 & 0 & \mathbf{w}_{e_{n_{p}}} \end{bmatrix} 2n_{p} & \mathbf{0} \\ \begin{bmatrix} \mathbf{w}_{e_{1}} & 0 & 0 \\ 0 & 0 & \mathbf{w}_{e_{n_{p}}} \end{bmatrix} \\ \begin{bmatrix} n_{p} \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \mathbf{w}_{1/|w_{1}|} & 0 & 0 \\ 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \mathbf{w}_{1/|w_{1}|} & 0 & 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \mathbf{w}_{1/|w_{1}|} & 0 & 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \mathbf{w}_{1/|w_{1}|} & 0 & 0 \\ 0 \end{bmatrix} \\ \begin{bmatrix} \mathbf{w}_{1/|w_{1}|} & 0 & 0 \\ 0 \end{bmatrix} \\ = \begin{bmatrix} \mathbf{p}_{1} \\ \mathbf{w}_{1/|w_{1}|} \end{bmatrix} \\ \begin{bmatrix} \mathbf{w}_{1} \\ \mathbf{w}_{2} \end{bmatrix} \\ \end{bmatrix}$$

P. D'Ambra

Input: A matrix, w (smooth) vector, maxsize maximum coarsest size **Output:** hierarchy of coarse matrices A^k

1
$$A^1 = A, k = 1, \mathbf{w^1} = \mathbf{w}$$

2 while size $(A^k) > maxsize$

- apply parallel matching-based pairwise aggregation to the graph of A^k with weigths depending on \mathbf{w}^k
- **build** P_c^k , $R_c^k = (P_c^k)^T$ and $A_c^k = R_c^k A^k P_c^k$ $A^{k+1} - A^k$ $\mathbf{w} = -B^k \mathbf{w}^k$

$$k = k + 1$$

endwhile

イロン イ団 とくほと くほとう

Input: A matrix, w (smooth) vector, maxsize maximum coarsest size **Output:** hierarchy of coarse matrices A^k

1
$$A^1 = A, k = 1, \mathbf{w^1} = \mathbf{w}$$

2 while size $(A^k) > maxsize$

 apply parallel matching-based pairwise aggregation to the graph of A^k with weigths depending on \mathbf{w}^k

$$\textcircled{B}$$
 build P_c^k , $R_c^k = (P_c^k)^T$ and $A_c^k = R_c^k A^k P_c^k$

$$k = k+1$$

endwhile

Increasing Coarsening Ratio for Reducing Complexity

Consecutive levels based on pairwise aggregation can be combined, e.g., double pairwise can be obtained by:

$$\overline{P_c}^k = P_c^{2k-1} P_c^{2k}, \quad \overline{R_c}^k = (\overline{P_c}^k)^T, \quad \overline{A_c}^k = A_c^{2k}, \quad k = 1, \dots \lceil nl/2 \rceil$$

< ロ > < 回 > < 回 > < 回 > < 回 >

Approximation matching algorithms & parallel software

efficient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

- quality guarantee of the computed matching, generally $1/2-{\rm approximation}$ to a maximum weight matching
- linear-time $\mathcal{O}(nnz)$ complexity
- available software in source form (MatchBox-P by Halappanavar et al.)

《口》《聞》《臣》《臣》

Approximation matching algorithms & parallel software

efficient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

- quality guarantee of the computed matching, generally $1/2-{\rm approximation}$ to a maximum weight matching
- linear-time $\mathcal{O}(nnz)$ complexity
- available software in source form (MatchBox-P by Halappanavar et al.)

Main advantages of CMATCH

• a completely automatic procedure applicable to general s.p.d. systems, independent of any heuristics or a priori information on the near kernel of A

Approximation matching algorithms & parallel software

efficient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

- quality guarantee of the computed matching, generally $1/2-{\rm approximation}$ to a maximum weight matching
- linear-time $\mathcal{O}(nnz)$ complexity
- available software in source form (MatchBox-P by Halappanavar et al.)

Main advantages of CMATCH

- a completely automatic procedure applicable to general s.p.d. systems, independent of any heuristics or a priori information on the near kernel of A
- well-balanced coarse matrices among parallel processes, no need for special treatment of process-boundary dofs accounting for inter-processes coupling

Approximation matching algorithms & parallel software

efficient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

- quality guarantee of the computed matching, generally $1/2-{\rm approximation}$ to a maximum weight matching
- linear-time $\mathcal{O}(nnz)$ complexity
- available software in source form (MatchBox-P by Halappanavar et al.)

Main advantages of CMATCH

- a completely automatic procedure applicable to general s.p.d. systems, independent of any heuristics or a priori information on the near kernel of A
- well-balanced coarse matrices among parallel processes, no need for special treatment of process-boundary dofs accounting for inter-processes coupling
- significant flexibility in the choice of the size of aggregates, almost arbitrarily aggressive coarsening

Approximation matching algorithms & parallel software

efficient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

- quality guarantee of the computed matching, generally $1/2-{\rm approximation}$ to a maximum weight matching
- linear-time $\mathcal{O}(nnz)$ complexity
- available software in source form (MatchBox-P by Halappanavar et al.)

Main advantages of CMATCH

- a completely automatic procedure applicable to general s.p.d. systems, independent of any heuristics or a priori information on the near kernel of A
- well-balanced coarse matrices among parallel processes, no need for special treatment of process-boundary dofs accounting for inter-processes coupling
- possible improving in V-cycle convergence, by smoothing of matching-based prolongators as in classic smoothed aggregation

$$P_s^k = (I - \omega(D^k)^{-1}A^k)P_c^k, \text{ for } D^k = \text{diag}(A^k)$$

Quality and Convergence: a posteriori analysis

Theorem

(D'Ambra, Durastante, Filippone, Zikatanov, 2022) Our TG-AMG B_{TG} with convergent smoother M and BCMATCH exact algorithm has the following property:

$$\|I - B_{TG}^{-1}A\|_{A} \le 1 - \frac{\mu_{c}}{c^{D}}$$

with $\mu_{c} = \min_{1 \le j \le J} \mu_{j}(V_{j}^{c}) = \min_{1 \le j \le J} \left[\max_{\mathbf{v}_{j} \in V_{j}} \min_{\mathbf{v}_{j}^{c} \in V_{j}^{c}} \frac{\|\mathbf{v}_{j} - \mathbf{v}_{j}^{c}\|_{D_{j}}^{2}}{\|\mathbf{v}_{j}\|_{A_{j}}^{2}} \right]$

and c^D the continuity constant of the smoother.

• The constants c^D depends on the symmetrized $ilde{M}$ convergent smoother

$$c_D \|\mathbf{v}\|_D^2 \le \|\mathbf{v}\|_{\tilde{M}^{-1}}^2 \le c^D \|\mathbf{v}\|_D^2$$

• The local constants $\mu_i^{-1}(V_j^c)$ are a quality measure for the single aggregates.

イロト イボト イヨト イヨト

Gauss-Seidel (GS): A = M - N, with M = L + D and $N = -L^T$, where D = diag(A) and L = tril(A)It is intrinsically sequential!

イロン イ団 と イヨン イヨン

Inexact block-Jacobi (HGS/l₁-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process the method acts as the GS method

<ロ> (日) (日) (日) (日) (日)

Inexact block-Jacobi (HGS/l₁-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process the method acts as the GS method

 ℓ_1 -HGS On process $p = 1, \dots, np$ relative to the (row) index set Ω_p^{nb} :

 $A_{pp} = L_{pp} + D_{pp} + L_{pp}^T$ where $D_{pp} = \text{diag}(A_{pp})$ and $L_{pp} = \text{tril}(A_{pp})$

イロト イヨト イヨト イヨト

Inexact block-Jacobi (HGS/l₁-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process the method acts as the GS method ℓ_1 -HGS On process p = 1, ..., np relative to the (row) index set Ω_p^{nb} : $A_{pp} = L_{pp} + D_{pp} + L_{pp}^T$ where $D_{pp} = \text{diag}(A_{pp})$ and $L_{pp} = \text{tril}(A_{pp})$ $(M_{\ell_1 - HGS})_p = L_{pp} + D_{pp} + D_{\ell_1 p}$ $D_{\ell_1 p} = diag((d_{\ell_1})_i)_{i=1,...,nb}, d_{\ell_1} = \sum_{j \in \Omega_p^{nb}} |a_{ij}|$

Inexact block-Jacobi (HGS/l₁-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process the method acts as the GS method ℓ_1 -HGS On process p = 1, ..., np relative to the (row) index set Ω_p^{nb} : $A_{pp} = L_{pp} + D_{pp} + L_{pp}^T$ where $D_{pp} = \text{diag}(A_{pp})$ and $L_{pp} = \text{tril}(A_{pp})$ $(M_{\ell_1 - HGS})_p = L_{pp} + D_{pp} + D_{\ell_1 p}$ $D_{\ell_1 p} = \text{diag}((d_{\ell_1})_i)_{i=1,...,nb}, d_{\ell_1} = \sum_{j \in \Omega_p^{nb}} |a_{ij}|$

 $M_{\ell_1 - HGS} = \operatorname{diag}((M_{\ell_1 - HGS})_p)_{p=1,\dots,np}$

P. D'Ambra

イロン イ団 とく ヨン イヨン

Inexact block-Jacobi (HGS/l₁-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process the method acts as the GS method ℓ_1 -HGS On process $p = 1, \ldots, np$ relative to the (row) index set Ω_n^{nb} : $A_{pp} = L_{pp} + D_{pp} + L_{pp}^T$ where $D_{pp} = \text{diag}(A_{pp})$ and $L_{pp} = \text{tril}(A_{pp})$ $(M_{\ell_1 - HGS})_p = L_{pp} + D_{pp} + D_{\ell_1 p}$ $D_{\ell_1 p} = diag((d_{\ell_1})_i)_{i=1,\dots,nb}, d_{\ell_1} = \sum |a_{ij}|$ $j \in \Omega_n^{nb}$ $M_{\ell_1 - HGS} = \text{diag}((M_{\ell_1 - HGS})_p)_{p=1,...,np}$ HINVK $M_{HINVK} = \text{diag}((M_{HINVK})_p)_{p=1,\dots,pp}$ with $(M_{HINVK})_p = A_{pp}^{-1} \approx ZD^{-1}Z^T$ suitable for GPUs

イロン イ団 と イヨン イヨン

The weak approximation constant

Let be P_c the CMATCH prolongator and P_f its D-orthogonal complement, with D = diag(A). Our weak approximation constant is:

 $K = (\lambda_{\min}((P_f^T \tilde{M} P_f)^{-1}(P_f^T A P_f)))^{-1}$

Unsmoothed prolongator with 3 sweeps of pairwise aggregation

m	np	HGS	$\ell_1 {-} HGS$	HINVK	$\ell_1 {-} INVK$
4096	1	1.3766	1.3766	1.5562	1.5562
2048	2	1.4194	1.5270	1.5273	1.7196
1024	4	1.4587	1.6621	1.6093	2.2149
512	8	1.4744	1.7803	1.8284	2.6713
256	16	1.4945	1.8230	1.8608	2.7307
128	32	1.5149	1.8682	1.8977	2.7972
64	64	1.5335	1.9162	1.9390	2.8715
32	128	1.5880	2.0343	2.0272	3.0707
16	256	1.6406	2.1594	2.1440	3.3688
8	512	1.6665	2.3088	2.3137	3.7280
l_1 -Jacobi				5.6220	
neous	3D Lap	lacian pro	blem with r	nesh size <i>n</i>	$n = 16^3$ over np

P. D'Ambra

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Test Case: Poisson Equation

 $-\Delta u=1~$ on unit cube, with DBC

- 7-point finite-difference discretization
- cartesian grid with uniform refinement along the coordinates for increasing mesh size

Solver/preconditioner settings

• AMG as preconditioner of CG, stopped when $\|\mathbf{r}^k\|_2/\|\mathbf{b}\|_2 \le 10^{-6}$, or itmax = 500

VSCMATCH V-cycle, CMATCH building aggregates of max size 8, smoothed prolongators

- coarsest matrix size $n_c \leq 200 np$, with np number of cores
- 1 sweep of forward/backward Hybrid Gauss-Seidel smoother (4 sweeps of l₁-Jacobi on GPU), parallel PCG coupled with Block-Jacobi+ILU(0) at the coarsest level

Platform: Piz Daint, Cray Model XC40/Cray XC50 with 5704 hybrid compute nodes (Intel Xeon E5-2690 v3 with Nvidia Tesla P100)

< ロ > < 回 > < 回 > < 回 > < 回 > <

Results at extreme scale: MPI vs hybrid MPI-CUDA

Execution Time for Solve (sec.)

<ロ> (日) (日) (日) (日) (日)

Results at extreme scale: MPI vs hybrid MPI-CUDA

Execution Time for Solve (sec.)

Performance/Power efficiency

the hybrid approach permits savings in solve time and energy consumption

P. D'Ambra

A CFD application inside Alya

Joint work with Herbert Owen Barcelona Super Computing Center

Bolund is an isolated hill situated in Roskilde Fjord, Denmark. An almost vertical escarpment in the prevailing W-SW sector ensures flow separation in the windward edge resulting in a complex flow field.

- Model: 3D incompressible unsteady Navier-Stokes equations for Large Eddy Simulations of turbulent flows $Re_{\tau}=10^7$
- **Discretization**: low-dissipation mixed FEM (linear FEM both for velocity and pressure)
- Time-Stepping: non-incremental fractional-step for pressure, explicit fourth order Runge-Kutta method for velocity

(日) (同) (日) (日)

Bolund Test Case - Strong Scaling - Pressure Equation

Three fixed size problems ($\approx 6 \times 10^6$, 4.4×10^7 , 0.35×10^9), for increasing number of cores, 20 time steps in the fully development flow phase

• AMG preconditioners largely reduce the total number of iterations

P. D'Ambra

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ ► < ∃ ►</p>

Bolund Test Case - Strong Scaling - Pressure Equation

Three fixed size problems ($\approx 6 \times 10^6$, 4.4×10^7 , 0.35×10^9), for increasing number of cores, 20 time steps in the fully development flow phase

solve time needed per each iteration decreases for increasing number of cores

P. D'Ambra

25 / 28

< ロ > < 回 > < 回 > < 回 > < 回 >

Bolund Test Case - Strong Scaling - Pressure Equation

Three fixed size problems ($\approx 6 \times 10^6$, 4.4×10^7 , 0.35×10^9), for increasing number of cores, 20 time steps in the fully development flow phase

 the trade-off between cost-per-iteration and number of iterations advantages the AMG preconditioners

P. D'Ambra

Concluding Remarks and Work in Progress

- PSCToolkit is a software project addressing scalability, flexibility and robusteness for high-performance scientific computing at extreme scale
- our new parallel coarsening algorithm based on compatible weighted matching, used in conjunction with smoothed prolongators and highly parallel smoothers, shows algorithmic and implementation scalability
- we solve systems with size larger than 10^{10} on current pre-exascale computers, embedding hybrid CPU-GPU nodes, saving time and energy
- scalability results and comparison with available software demonstrates the validity of our approaches both in terms of algorithms and in terms of software development
- integration and testing within very large scale wind simulations and hydrology applications, in collaborations with BSC and JSC, gave very promising results
- \bullet we want to explore extreme scalability beyond $10^5/10^6$ computing cores and trillions (10^{18}) of dofs

<ロ> <四> <ヨ> <ヨ>

Main recent references

- P. D'Ambra, F. Durastante, S. Filippone, L. Zikatanov, On the Quality of Matching-based Aggregates for Algebraic Coarsening of SPD Matrices in AMG, 2022. Under revision.
- O. Bertaccini, P. D'Ambra, F. Durastante, S. Filippone, Preconditioning Richards Equations: Spectral Analysis and Parallel Solution at Very Large Scale, 2021. Under revision.
- P. D'Ambra, F. Durastante, S. Filippone, AMG Preconditioners for Linear Solvers towards Extreme Scale, SIAM Journal on Scientific Computing, Vol. 43, N.5, 2021.
- H. Owen, G. Houzeaux, F. Durastante, S. Filippone, P. D'Ambra, AMG4PSBLAS Linear Algebra Package brings Alya one step closer to Exascale, in Proceedings of 32nd International Conference on Parallel Computational Fluid Dynamics (ParCFD) 2021.
- M. Bernaschi, P. D'Ambra, D. Pasquini, AMG based on Compatible Weighted Matching on GPUs, Parallel Computing. Vol. 92, 2020.

Thanks for Your Attention

This work was performed with support of the European Union's Horizon 2020 research and innovation programme under grant agreement N. 824158 and under H2020-JTI-EuroHPC agreement N. 956831

イロン イ団 とくほと くほとう

Preconditioners Setup Time in Alya

3

イロン イ団 とく ヨン イヨン