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What we want to solve

Ax = b, A ∈ Rn×n (s.p.d.) x,b ∈ Rn

n large

sparsity degree = 1− nnz

n2
≈ 1

often the most time consuming computational kernel in many areas of
Computational/Data Science

30s 40s 50s 60s 70s 80s 90s 00s 10s 20s

n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8
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n ∼ 10 n ∼ 20 n ∼ 90 n ∼ 500

n ∼ 104,5

n ∼ 105,6 n ∼ 106,7
n ∼ 10≥8

The exascale challenge: using computer that do 1015 Flops, targeting next-gen
systems doing 1018 Flops, to solve problems with tens of billions (1012) dofs

P. D'Ambra Scalable AMG 3 / 28



Where we want to solve it1

System Cores Rmax
(TFlops/s)

1 Fugaku 7,630,848 442,010.0
2 Summit 2,414,592 148,600.0
3 Sierra 1,572,480 94,640.0
...

...
...

...
18 Marconi-100 347,776 21,640.0
20 Piz Daint 387,872 21,230.0
...

...
...

...
74 MareNostrum 153,216 6,470.8

Computers with thousands of CPU cores and
GPU accelerators

Hybrid form of parallelism/programming
models: MPI, OpenMP,
CUDA/OpenCL/OpenACC, . . .

Marconi 100 - Cineca

Piz Daint - CSCS

1TOP500 list, November 2021 � https://www.top500.org
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Main issues and challenges

the cost of data movement dominates the cost of �oating-point arithmetic

accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision �oating-point arithmetic

minimizing energy consumption is important for sustainability of HPC
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accelerators (GPUs, FPGAs, . . .) can run at very high throughput exploiting
high levels of data parallelism

accelerators work very fast on low precision �oating-point arithmetic

minimizing energy consumption is important for sustainability of HPC

New Mathematics, new algorithms

and new software development tools are needed
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EoCoE project

Energy oriented Center of Excellence: toward exascale for energy

applying cutting-edge computational methods to accelerate the transition to the
production, storage and management of clean, decarbonized energy

Wind Materials

Water Fusion

Main aim

prepare selected applications to face the exascale challenge
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EoCoE target applications

Wind Models

Image credits H. Owen and G. Marin, Barcelona

Supercomputing Centre

Navier-Stokes equations,

Euler equations,

Turbulence models,

. . .

Regional Hydrological Models

Darcy equation,

Richards equation,

Equations for overland �ow

. . .

Target DoFs: n > 1012, Computing processes: np ≈ 106
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TEXTAROSSA project

Towards EXtreme scale Technologies and Accelerators for euROhpc
hw/Sw Supercomputing Applications for exascale

developing new software tools for high-performance and high-energy e�ciency on
near-future exascale computing systems by multi-directional co-design approach

Our contribution: performance/power e�cient MathLib
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Parallel Sparse Computation Toolkit

Parallel Sparse Basic
Linear Algebra
Subroutines

Prompted by some works of
Iain Du� et al. on standard

for Sparse BLAS
+

its GPU-plugin

AMG Preconditioners
for PSBLAS

Available from https://psctoolkit.github.io/
Recently selected as Key Innovation from EU Innovation Radar
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AMG4PSBLAS: AMG Preconditioners for PSBLAS

A software development project started in late 2007

initially developed as a package of algebraic multigrid Schwarz
preconditioners, extended to more general AMG preconditioners

object-oriented design in Fortran 2003/2008, layered sw architecture on top
of PSBLAS
=⇒ modularity and �exibility

clear separation between interface and implementation of methods
=⇒ performance and extensibility (e.g., works transparently on GPUs)

separated users' interface for setup of the multigrid hierarchy and setup of
the smoothers and solvers to have large �exibility at each level

P. D'Ambra et al., MLD2P4: a Package of Parallel Algebraic Multilevel Domain Decomposition
Preconditioners in Fortran 95, ACM TOMS, 37, 3, 2010
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AMG Methods

Example: symmetric V-cycle

procedure V-cycle
(
k, nlev,Ak, bk, xk

)
if (k 6= nlev) then

xk = xk + (Mk)−1
(
bk −Akxk

)
bk+1 = (P k+1)T

(
bk −Akxk

)
xk+1 = V-cycle

(
k + 1, Ak+1, bk+1, 0

)
xk = xk + P k+1xk+1

xk = xk + (Mk)−T
(
bk −Akxk

)
else

xk =
(
Ak
)−1

bk

endif

return xk

end

AMG methods do not explicitly use the problem geometry and

rely only on matrix entries to generate coarse grids (setup phase)
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(Two-grid) Convergence

Theorem
(Falgout and Vassilevski, 2004) The two-grid preconditioner BTG de�ned from the
iteration matrix:

I −B−1
TGA = (I −M−1A)(I − P (PTAP )−1PTA)(I −M−TA)

is spectrally equivalent to A and the following estimate holds:

vTAv ≤ vTBTGv ≤ KTGv
TAv, with

KTG = supv∈Rn\0
vT M̃(I − πM̃ )v

vTAv
,

where M̃ = M(M +MT −A)−1MT is the symmetrized smoother and
πM̃ = P (PT M̃P )−1PT M̃ is the M̃−based projection.

Ideal prolongator

Assume that R and S form an orthogonal decomposition of Rn, i.e., RS = 0, and P is
such that PR is a projection onto Range(P ), the best constant is

K∗ = (λmin((ST M̃S)−1STAS))−1 and the corresponding minimizer is
P ∗ = (I − S(STAS)−1STA)RT
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Scalable preconditioners

Solve the system:
BAx = Bb,

with matrix B ≈ A−1 (left preconditioner) such that:

maxi λi(B
−1A) ≈ 1 being independent of n (algorithmic scalability)

the action of B costs as little as possible, the best being O(n) �ops (linear
complexity)
in a massively parallel computer, B should be composed of local actions,
(implementation scalability, i.e., performance linearly proportional to
the number of processors employed)

MultiGrid performance parameters

convergence rate ρ < 1: a�ects number of solver iterations

operator complexity opc =
∑nlev−1

k=0 nnz(Ak)

nnz(A0) : a�ects memory requirements

and cycle time

average stencil size s(Ak) = nnz_row(Ak): a�ects computation and
communication both in setup and in cycle time
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Our recipies: CMATCH parallel coarsening
Let w ∈ Rn smooth vector, let Pc ∈ Rn×nc and Pf ∈ Rn×nf be a prolongator
and a complementary prolongator, such that:

Rn = Range(Pc)⊕⊥ Range(Pf ), n = nc + nf

w ∈ Range(Pc) : coarse space Range(Pf ) : complementary space

[Pc, Pf ]TA[Pc, Pf ] =

(
PT
c APc PT

c APf

PT
f APc PT

f APf

)
=

(
Ac Acf

Afc Af

)
Ac : coarse matrix Af : hierarchical complement

E�cient coarsening (Falgout and Vassilevski, 2004)

Good convergence rate of compatible relaxation:
ρf = ‖I −M−1f Af‖Af

<< 1 with Mf = PT
f MPf

Our idea (D'Ambra et al., 2013, 2016, 2018)

build Pc (and Pf ) by dofs aggregation based on matching in the weighted
(adjacency) graph of A, to make Af as diagonally-dominant as possible
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CMATCH (cont'd)

Weighted graph matching

Given an (undirected) graph G = (V, E)
(with adjacency matrix A), and a weight
(smooth) vector w we consider the
weighted version of G with weight
matrix Â:

(Â)i,j = âi,j = 1− 2ai,jwiwj

ai,iw2
i + aj,jw2

j

a matchingM is a set of pairwise
non-adjacent edges

a maximum weight matching
maximizes the sum of the weights of
its edges ei 7→j

We divide the index set into matched vertices
I =

⋃np
i=1 Gi, with Gi ∩ Gj = ∅ if i 6= j, and

(possible) unmatched vertices, i.e., ns singletons Gi
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From the matching to the prolongator

We can formally de�ne a prolongator:

Pc =



we1 0 0

0
. . . 0

0 0 wenp


np

2np 0

0
w1/|w1| 0 0

0
. . . 0

0 0 wns/|wns |


ns

ns




nc=np+ns=J

n
=

2
n
p
+

n
s

=

[
P̃ O
O W

]
= [p1, . . . ,pJ ], we =

1√
w2
i + w2

j

[
wi
wj

]

⇒ TheM on (a log transformation of) Â produces Af with dominant diagonal entries,
for Pf such that PTc DPf = 0, with D = diag(A) (Olschowka et al. 1996, Du� et al.,
2001)
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CMATCH (cont'd)

Input: A matrix, w (smooth) vector,
maxsize maximum coarsest size
Output: hierarchy of coarse matrices Ak

1 A1 = A, k = 1, w1 = w
2 while size(Ak) > maxsize

2.1 apply parallel matching-based pairwise aggregation to the graph of Ak with
weigths depending on wk

2.2 build P kc , R
k
c = (P kc )T and Akc = RkcA

kP kc
2.3 Ak+1 = Akc , wc = Rkcw

k

2.4 k = k + 1

endwhile

Increasing Coarsening Ratio for Reducing Complexity

Consecutive levels based on pairwise aggregation can be combined,
e.g., double pairwise can be obtained by:

Pc
k

= P 2k−1
c P 2k

c , Rc
k

= (Pc
k
)T , Ac

k
= A2k

c , k = 1, . . . dnl/2e
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CMATCH (cont'd)

Approximation matching algorithms & parallel software

e�cient (sub-optimal) algorithms (Catalyürek et al. 2012, Manne et al. 2014)

quality guarantee of the computed matching, generally 1/2−approximation to
a maximum weight matching

linear-time O(nnz) complexity

available software in source form (MatchBox-P by Halappanavar et al.)

Main advantages of CMATCH

a completely automatic procedure applicable to general s.p.d. systems,
independent of any heuristics or a priori information on the near kernel of A

well-balanced coarse matrices among parallel processes, no need for special
treatment of process-boundary dofs accounting for inter-processes coupling

possible improving in V-cycle convergence, by smoothing of matching-based
prolongators as in classic smoothed aggregation

P k
s = (I − ω(Dk)−1Ak)P k

c , for D
k = diag(Ak)
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Quality and Convergence: a posteriori analysis

Theorem
(D'Ambra, Durastante, Filippone, Zikatanov, 2022) Our TG-AMG BTG with convergent
smoother M and BCMATCH exact algorithm has the following property:

‖I −B−1
TGA‖A ≤ 1− µc

cD

with µc = min
1≤j≤J

µj(V
c
j ) = min

1≤j≤J

[
max
vj∈Vj

min
vc
j∈V

c
j

‖vj − vcj‖2Dj

‖vj‖2Aj

]

and cD the continuity constant of the smoother.

The constants cD depends on the symmetrized M̃ convergent smoother

cD‖v‖2D ≤ ‖v‖2M̃−1 ≤ cD‖v‖2D

The local constants µ−1
j (V cj ) are a quality measure for the single aggregates.
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Our recipies: highly parallel smoothers

Gauss-Seidel (GS): A = M −N , with M = L+D and N = −LT ,
where D = diag(A) and L = tril(A)

It is intrinsically sequential!

Inexact block-Jacobi (HGS/`1-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process
the method acts as the GS method

`1-HGS On process p = 1, . . . , np relative to the (row) index set Ωnbp :
App = Lpp +Dpp + LTpp where Dpp = diag(App) and Lpp = tril(App)

(M`1−HGS)p =Lpp +Dpp +D`1p

D`1p = diag((d`1)i)i=1,...,nb, d`1 =
∑
j∈Ωnb

p

|aij |

M`1−HGS = diag((M`1−HGS)p)p=1,...np

HINVK MHINVK = diag((MHINVK)p)p=1,...np

with (MHINVK)p = A−1
pp ≈ ZD−1ZT suitable for GPUs
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Inexact block-Jacobi (HGS/`1-HGS/HINVK)

HGS version of GS, in the portion of the row-block local to each process
the method acts as the GS method
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The weak approximation constant

Let be Pc the CMATCH prolongator and Pf its D-orthogonal complement, with
D = diag(A). Our weak approximation constant is:

K = (λmin((PTf M̃Pf )−1(PTf APf )))−1

Unsmoothed prolongator with 3 sweeps of pairwise aggregation

m np HGS `1−HGS HINVK `1−INVK

4096 1 1.3766 1.3766 1.5562 1.5562
2048 2 1.4194 1.5270 1.5273 1.7196
1024 4 1.4587 1.6621 1.6093 2.2149
512 8 1.4744 1.7803 1.8284 2.6713
256 16 1.4945 1.8230 1.8608 2.7307
128 32 1.5149 1.8682 1.8977 2.7972
64 64 1.5335 1.9162 1.9390 2.8715
32 128 1.5880 2.0343 2.0272 3.0707
16 256 1.6406 2.1594 2.1440 3.3688
8 512 1.6665 2.3088 2.3137 3.7280

l1-Jacobi 5.6220

homogeneous 3D Laplacian problem with mesh size m = 163 over np processes.
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Test Case: Poisson Equation

−∆u = 1 on unit cube, with DBC

7-point �nite-di�erence discretization

cartesian grid with uniform re�nement along the coordinates for increasing
mesh size

Solver/preconditioner settings

AMG as preconditioner of CG, stopped when ‖rk‖2/‖b‖2 ≤ 10−6, or
itmax = 500

VSCMATCH V-cycle, CMATCH building aggregates of max size 8,
smoothed prolongators

coarsest matrix size nc ≤ 200np, with np number of cores

1 sweep of forward/backward Hybrid Gauss-Seidel smoother (4 sweeps of
l1−Jacobi on GPU), parallel PCG coupled with Block-Jacobi+ILU(0) at the
coarsest level

Platform: Piz Daint, Cray Model XC40/Cray XC50 with 5704 hybrid compute
nodes (Intel Xeon E5-2690 v3 with Nvidia Tesla P100)
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Results at extreme scale: MPI vs hybrid MPI-CUDA
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Execution Time for Solve (sec.)

6M dof x GPU 3M dof x GPU 256k dof x MPI core

512k dof x MPI core 1M dof x MPI core
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6M dof x GPU 3M dof x GPU 256k dof x MPI core

512k dof x MPI core 1M dof x MPI core

Performance/Power e�ciency

the hybrid approach permits savings in solve time and energy consumption
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A CFD application inside Alya

Joint work with
Herbert Owen

Barcelona Super Computing Center

Bolund is an isolated hill situated in
Roskilde Fjord, Denmark. An almost
vertical escarpment in the prevailing

W-SW sector ensures �ow separation in
the windward edge resulting in a

complex �ow �eld.

Model: 3D incompressible unsteady
Navier-Stokes equations for Large Eddy
Simulations of turbulent �ows Reτ = 107

Discretization: low-dissipation mixed FEM
(linear FEM both for velocity and pressure)

Time-Stepping: non-incremental
fractional-step for pressure, explicit fourth
order Runge-Kutta method for velocity
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Bolund Test Case - Strong Scaling - Pressure Equation

Three �xed size problems (≈ 6× 106, 4.4× 107, 0.35× 109), for increasing number of
cores, 20 time steps in the fully development �ow phase

AMG preconditioners largely reduce the total number of iterations
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Bolund Test Case - Strong Scaling - Pressure Equation

Three �xed size problems (≈ 6× 106, 4.4× 107, 0.35× 109), for increasing number of
cores, 20 time steps in the fully development �ow phase

solve time needed per each iteration decreases for increasing number of cores
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Bolund Test Case - Strong Scaling - Pressure Equation

Three �xed size problems (≈ 6× 106, 4.4× 107, 0.35× 109), for increasing number of
cores, 20 time steps in the fully development �ow phase

the trade-o� between cost-per-iteration and number of iterations advantages the AMG
preconditioners
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Concluding Remarks and Work in Progress

PSCToolkit is a software project addressing scalability, �exibility and
robusteness for high-performance scienti�c computing at extreme scale

our new parallel coarsening algorithm based on compatible weighted
matching, used in conjunction with smoothed prolongators and highly parallel
smoothers, shows algorithmic and implementation scalability

we solve systems with size larger than 1010 on current pre-exascale
computers, embedding hybrid CPU-GPU nodes, saving time and energy

scalability results and comparison with available software demonstrates the
validity of our approaches both in terms of algorithms and in terms of
software development

integration and testing within very large scale wind simulations and hydrology
applications, in collaborations with BSC and JSC, gave very promising results

we want to explore extreme scalability beyond 105/106 computing cores and
trillions (1018) of dofs
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Preconditioners Setup Time in Alya
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