Parallel Sparse Computation Toolkit: Towards Exascale Linear Algebra

F. Durastante

Wednesday, September 14rd - ITWSHPC-22

Università di Pisa, ➡ fabio.durastante@unipi.it Istituto per le Applicazioni del Calcolo "M. Picone" – CNR

Collaborators and Funding

Pasqua D'Ambra, Consiglio Nazionale delle Ricerche Istituto per le Applicazioni del Calcolo "M. Picone"

Salvatore Filippone, Università degli Studi di Roma "Tor Vergata" Dipartimento di Ingegneria Civile e Ingegneria Informatica IAC-CNR

Horizon 2020 European Union funding for Research & Innovation

Solve :
$$A\mathbf{x} = \mathbf{b}$$
,

where

- $A \in \mathbb{R}^{n \times n}$ is a very large and sparse matrix nnz(A) = O(n),
- $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$,

is often the most time consuming computational kernel in many areas of computational science and engineering problems.

Solve : $A\mathbf{x} = \mathbf{b}$,

where

• $A \in \mathbb{R}^{n \times n}$ is a very large and sparse matrix nnz(A) = O(n),

• $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$.

The exascale challenge, using computer that do 10^{15} Flops, targeting next-gen systems doing 10^{18} Flops to solve problems with tens of billions of unknowns.

1

Parallel Sparse Computation Toolkit - psctoolkit.github.io

Two central libraries **PSBLAS** and AMG4PSBLAS:

- Existing software standards:
 - MPI, OpenMP, CUDA
 - Serial sparse BLAS,
- (Par)Metis,
- AMD
- Attention to performance using modern Fortran;
- Research on new preconditioners;
- No need to delve in the data structures for the user;
- Tools for error and mesh handling beyond simple algebraic operations;
- Standard Krylov solvers

Parallel Sparse Computation Toolkit - psctoolkit.github.io

Two central libraries PSBLAS and AMG4PSBLAS:

- Domain decomposition preconditioners of Schwartz type
- Algebraic multigrid with aggregation schemes
 - Parallel coupled Weighted Matching Based Aggregation
 - Smoothed Aggregation (Vaněk, Mandel, Brezina)
- Parallel Smoothers (Block-Jacobi, DD-Schwartz, Hybrid-GS/SGS/FBGS, l₁ variants) that can be coupled with specialized block (approximate) solvers MUMPS, SuperLU, incomplete factorizations ((H)AINV, (H)INVK/L, (H)ILU-type)
- V-Cycle, W-Cycle, K-Cycle

Parallel Sparse Computation Toolkit - psctoolkit.github.io

Opensource code, BSD3 License:

"free as in free ${\rm I\!\!D}$ and as in free ${\rm I\!\!Q}$."

$\$ Integrated $\$ with

Alya - High Performance Computational Mechanics Barcelona Supercomputing Center

SUNDIALS

SUite of Nonlinear and DIfferential/ALgebraic equation Solvers. Lawrence Livermore National Laboratory

Available from O GitHub repository, packaged for Fedora and Centos, and recently for Spack.
 Website: https://psctoolkit.github.io/

4 7

The SUNDIALS/KINSOL Software Framework

▲ The SUNDIALS integration has been implemented to have a **Newton solver** using **our Krylov methods** and **preconditioner**.

Weak scaling: In case of weak scaling, both the number of processors and the problem size are increased. This also results in a *constant workload per processor*.

- In the Piz Daint machine up to 27000 cores and 2048 GPUs
- Intersection of the section of t
- **☞** DoF: 256k/512k/1M unknown × MPI core and 3M/6M per GPUs
- Piz Daint Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect, NVIDIA Tesla P100 (23rd TOP500 June'22)
- **T** Measures: execution time for solve

Weak Scalability - CPU/GPU Runs - Piz Daint

Execution Time for Solve (s) - K-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

Weak Scalability - CPU/GPU Runs - Piz Daint

Execution Time for Solve (s) - VS-PMC3-HGS1-PKR vs VS-PMC3-L1JAC-PKR

Two applications: ≒wind and ≅water

ਤੇ Herbert Owen Barcelona Supercomputing Center

Solution of 3D incompressible unsteady Navier-Stokes equations for the Large Eddy Simulations of turbulent flows,

</>
 Alya

MareNostrum - Lenovo SD530, Xeon Platinum 8160 24C 2.1GHz, Intel Omni-Path, Lenovo (82nd TOP500 June'22)

Stefan Kollet Research Centre Jülich

- Simulation of three-dimensional groundwater flow with overland flow via Richards equation,
- **</>
 >** SUNDIALS/KINSOL & PARFLOW
- Marconi-100 IBM Power System AC922, IBM POWER9 16C 3GHz, Nvidia Volta V100, Dual-rail Mellanox EDR Infiniband, IBM (21st TOP500 June'22)

U Getting scalability on thousand of processors and better global solution timings.

ನೆ Strong scaling: solution of the pressure equation

- Measuring time per single iteration.
- The trade-off between cost-per-iteration and number of iterations advantages PSCToolkit over Alya old solvers.
- 47 to 12887 cores, different global loads.

Strong and weak scaling: global solution

U Total time to solution (seconds) using different preconditioning strategies.

Concluding remarks

- ✓ A suite of libraries already working on large and real life test cases,
- \checkmark a proved ease of integration and interfacing within other scientific libraries,
- ✓ working on different architectures and software environments,
- \checkmark a tool for developing new algorithms.

Currently working on:

- Hybrid OpenMP/MPI parallelism inside preconditioner assembly routines,
 communication avoiding algorithms.
- Latest references (detailed bibliography on psctoolkit.github.io):
 - P. D'Ambra, F. D. and S. Filippone, AMG preconditioners for linear solvers towards extreme scale, SIAM J. Sci. Comput. 43 (2021), no. 5, S679–S703.
 - D. Bertaccini, P. D'Ambra, F. D. and S. Filippone, Why diffusion-based preconditioning of Richards equation works: spectral analysis and computational experiments at very large scale (2022), arXiv:2112.05051.
 - H. Owen, G. Houzeaux, F. D., S. Filippone, P. D'Ambra, AMG4PSBLAS Linear Algebra Package brings Alya one step closer to Exascale. *In preparation*