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Main Kernel in Computational/Data Science

Ax = b, A ∈ Rn×n (s.p.d.) x,b ∈ Rn

n >> 109

sparsity degree ≈ 99, 9%

Applications
numerical simulations: high-resolution models of subsurface flows

in water/hydrocarbons/gas resource management
require discretization meshes with more than ten
billions (> 1010) dofs

network analysis: community detection in communication/social
networks, e.g., the mobile operator Vodaphone has
about 200 million (2 × 108) customers and Google
indexes several billion (> 109) web-pages
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Krylov methods

A matrix is sparse when there are so many zeros
(nonzeros are typically O(n)) that it pays off to take ad-
vantage of them in the computer representation. James
Wilkinson

Methods of choice:Search for a solution by projection

xm ∈ Km(A, r0)

rm = b − Axm ⊥ Km(A, r0)

Km(A, r0) = Span{r0,Ar0,A2r0, . . . ,Am−1r0}
Krylov subspace (growing with iteration until xm is good enough)

Conjugate Gradient (CG) for s.p.d. matrices (1952)
CG Convergence

∥ek∥A
∥e0∥A

≤ 2
(

a − 1
a + 1

)
, a =

√
µ(A) = λmax/λmin

ek = x − xk error at iteration k, λ eigenvalue of A
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Preconditioning

Solve the system
B−1Ax = B−1b, with
matrix B ≈ A−1 (left

preconditioner) such that:

µ(B−1A) << µ(A)

Solving 2D Poisson eq.
(2500 dofs, µ(A) ≈ 1.5 × 103)

IC(0): B = LLT with L incompl.
Cholesky factor, µ(B−1A) ≈ 2.2 × 102



Scalable (optimal) preconditioners

∼ $ µ(B−1A) ≈ 1, being independent of n (algorithmic scalability)
∼ $ the action of B−1 costs as little as possible, the best being

O(n) flops (linear complexity)
∼ $ in a massively parallel computer, B−1 should be composed of

local actions, (implementation scalability, i.e., parallel
execution time increases linearly with n)

MultiGrid (MG) Preconditioners
show optimal behaviour for many s.p.d. matrices,

e.g., matrices coming from scalar elliptic PDEs

optimal preconditioner ̸= fastest preconditioner
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Main Issues for effective parallel MG preconditioners

∼ $ single-processor performance
∼ $ memory occupation
∼ $ balance between computation and communication costs
∼ $ robustness
∼ $ flexibility and wide applicability
∼ $ preconditioner setup time vs. solve time
∼ $ re-use and efficient updating for varying matrices
∼ $ ease of use, including interfacing with (legacy) application

codes
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Algebraic Multigrid Algorithms

Given Matrix A ∈ Rn×n SPD

Wanted Iterative method B to
precondition the CG method:

∼ $ Hierarchy of systems
Alx=bl , l = 0, . . . , nlev

∼ $ Transfer operators:
P l

l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother
Ml : Rnl → Rnl

“High frequencies”

Prolongator
P l

l+1 : Rnl → Rnl+1

“Low frequencies”
Complementarity of Smoother and Prolongator



Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)
Algebraic MultiGrid methods do not explicitly use the (eventual)

problem geometry but rely only on matrix entries to generate
coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices
error not reduced by the (chosen) smoother are called

algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi) ∈ Range(P)



Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)
Algebraic MultiGrid methods do not explicitly use the (eventual)

problem geometry but rely only on matrix entries to generate
coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices
error not reduced by the (chosen) smoother are called

algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi) ∈ Range(P)



Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)
Algebraic MultiGrid methods do not explicitly use the (eventual)

problem geometry but rely only on matrix entries to generate
coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices
error not reduced by the (chosen) smoother are called

algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi) ∈ Range(P)



Table of Contents

Motivation
Large and sparse linear systems
Scalable solvers

Algebraic MultiGrid Methods
Introduction to AMG
AMG Setup

AMG4PSBLAS
AMG4PSBLAS’s Features

User’s Interface
Example of use

Experiments on linear systems from EoCoE
Weak scalability on Piz Daint operated by CSCS
Preliminary results on a CFD application inside Alya



Algebraic MultiGrid (AMG) Setup

Recursive application of a two-grid scheme
∼ $ setup of a convergent iterative solver M (the smoother)

∼ $ setup of a coarse vector space Rnc from Rn

∼ $ build the prolongation P from A

∼ $ compute coarse grid matrix Ac = PT AP

AMG based on Aggregation of dofs
Group the dofs into disjoint sets of aggregates Gj ; each aggregate Gj
corresponds to 1 coarse dof

Associated prolongation:

P := Pij =

{
wi if i ∈ Gj
0 otherwise

i = 1, . . . , n, j = 1, . . . , nc ,

or smoothed version of P (Vaněk 1996)
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Parallel AMG Setup: decoupled aggregation

P. Vaněk, J. Mandel and M. Brezina,
Algebraic multigrid by smoothed

aggregation for second and fourth order
elliptic problems, Computing 56 (1996),

no. 3, 179–196.

∼ $ embarrassingly parallel but it
may produce non-uniform
aggregates

∼ $ generally it yields good
results in practice on scalar
elliptic problems (Tuminaro
and Tong, 2000)



Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching
Given a graph G = (V, E) (with adjacency
matrix A), and a weight vector w we consider
the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 − 2ai ,jwiwj
ai ,iw2

i + aj,jw2
j
,

∼ $ a matching M is a set of pairwise
non-adjacent edges, containing no loops;

∼ $ a maximum product matching if it
maximizes the product of the weights of
the edges ei 7→j in it.

P. D’Ambra, S. Filippone
and P. S. Vassilevski,

BootCMatch: a software
package for bootstrap
AMG based on graph

weighted matching, ACM
Trans. Math. Software
44 (2018), no. 4, Art.

39, 25 pp.



Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching
Given a graph G = (V, E) (with adjacency
matrix A), and a weight vector w we consider
the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 − 2ai ,jwiwj
ai ,iw2

i + aj,jw2
j
,

∼ $ a matching M is a set of pairwise
non-adjacent edges, containing no loops;

∼ $ a maximum product matching if it
maximizes the product of the weights of
the edges ei 7→j in it.

We divide the index set
into matched vertexes
I =

∪np
i=1 Gi , with

Gi ∩ Gj = ∅ if i ̸= j, and
unmatched vertexes, i.e.,

ns singletons Gi .



Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching
Given a graph G = (V, E) (with adjacency
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To increase dimension
reduction we can

perform more than
one sweep of

matching per step.



Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching
Given a graph G = (V, E) (with adjacency
matrix A), and a weight vector w we consider
the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 − 2ai ,jwiwj
ai ,iw2

i + aj,jw2
j
,

∼ $ a matching M is a set of pairwise
non-adjacent edges, containing no loops;

∼ $ a maximum product matching if it
maximizes the product of the weights of
the edges ei 7→j in it.

To increase regularity
of Pl we can consider

a smoothed
prolongator by

applying a Jacobi
step.



Comparison of the Coarsening Strategy

VBM Decoupled aggregation
✓ Embarrassingly parallel,
✓ Good results with discretized

scalar PDEs on a limited
number of cores,

 May produce non-uniform
aggregates,

 Needs user inputted parameters
for strength of connection,

 Issues with anisotropic
problems.

Matching-based aggregation
✓ Independent of any heuristics

or a priori information on the
near kernel of A,

✓ Builds coarse matrices which
are well-balanced among
parallel processes,

✓ No need for special treatment
of process-boundary dofs,

✓ Works with discretized system
of PDEs with arbitrary
ordering,

 May have problems with highly
anisotropic problems.
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AMG4PSBLAS: Parallel Preconditioners based on PSBLAS

∼ $ Improves on the previous versions of the package, initially
developed for algebraic multigrid Schwarz preconditioners,
upon the extension to more general AMG preconditioning
done within EoCoE-I

∼ $ Object-oriented design in Fortran 2003, layered sw
architecture on top of PSBLAS
=⇒ modularity and flexibility

∼ $ Clear separation between interface and implementation of
methods
=⇒ performance and extensibility

∼ $ Separated users’ interface for setup of the multigrid hierarchy
and setup of the smoothers and solvers to have large flexibility
at each level

∼ $ Plugin for GPU exploitation (work in progress)
∼ $ C and Octave interfaces (work in progress)



AMG4PSBLAS Software Architecture

User interface

Multilevel data structures & related methods

Smoothers data structures & related
methods; Interfaces to external packages

Basic components (matrices, index
spaces, maps) & Related Methods

UMFPACK
SuperLU

SuperLU_Dist
MUMPS

Fortran C

MPI

AM
G4

PS
BL

AS
PS

BL
AS



Current version of AMG4PSBLAS preconditioners

setup phase: GPU implementation is work in progress
∼ $ decoupled smoothed aggregation
∼ $ parallel coupled matching-based aggregation
∼ $ distributed or replicated coarsest matrix

solve phase: already available on GPU for some methods
∼ $ cycles: V, W, K
∼ $ smoothers: l1-Jacobi, hybrid (F/B)

Gauss-Seidel, block-Jacobi / additive Schwarz
with LU, ILU factorizations or sparse
approximate inverses for the blocks

∼ $ coarsest-matrix solvers: sparse LU, l1-Jacobi,
hybrid (F/B) Gauss-Seidel, block-Jacobi with
LU, ILU factorizations or sparse approximate
inverses of the blocks, iterative PCG

∼ $ LU factorizations for smoothers & coarsest-level
solvers: UMFPACK, MUMPS, SuperLU,
SuperLU_Dist



User’s interface for preconditioner setup

∼ $ p%init(contx,ptype,info): allocates and initializes the
preconditioner p, according to the preconditioner type chosen
by the user

∼ $ p%set(what,val,info [,ilev, ilmax, pos, idx]): sets
the parameters defining the preconditioner p, i.e., the value
contained in val is assigned to the parameter identified by
what

∼ $ p%hierarchy_build(a,desc_a,info): builds the hierarchy
of matrices and restriction/prolongation operators for the
multilevel preconditioner p

∼ $ p%smoothers_build(a,desc_a,p,info[,am,vm,im]):
builds the smoothers and the coarsest-level solvers for the
multilevel preconditioner p

∼ $ p%build(a,desc_a,info[,am,vm,im]): builds the
preconditioner p (it is internally implemented by invoking the
two previous methods)



User’s interface for preconditioner apply

∼ $ p%apply(x,y,desc_a,info [,trans,work]): computes
y = op(B−1) x , where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its
transpose, according to the value of trans.
p%apply is called within the PSBLAS method psb_krylov
and hence it is completely transparent to the user.

∼ $ call p%free(p,info): deallocates the preconditioner data
structure p

∼ $ call p%descr(info, [iout]): prints a description of the
preconditioner p
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Example of use for CPU/GPU

! sparse matrix
type( psb_dspmat_type ) :: A
! variable declaration needed for GPU running
type( psb_d_hlg_sparse_mat ), target :: ahlg
type( psb_d_vect_gpu ) :: vgm
type( psb_i_vect_gpu ) :: igm
! sparse matrix descriptor
type( psb_desc_type ) :: DESC_A
! preconditioner data
type( amg_dprec_type ) :: P
...
! inizialize parallel environment
call psb_init (ctxt)
call psb_info (ctxt ,iam ,np)
! read and assemble matrix A and rhs b using
! PSBLAS facilities



Example of Use for CPU/GPU (cont’d)

! setup AMG preconditioner
call P%init(’ML ’, info)
! Setting up the options (more of this later ...)
call P%set(<attribute>, <value>, info)
! build preconditioner
call P% hierarchy_build (A,DESCA ,info)
! last three optional parameters for GPU running
call P% smoothers_build (A,DESCA ,info ,am=ahlg , &
^^I& vm=vgm , im=igm)
! print description of the built preconditioner
call P% descr (info)
! conversions & vector assembly for GPU running
call DESCA%cnv(mold=igm)
call A% cscnv (info ,mold=ahlg)
call psb_geasb (x,DESC_A ,info ,mold=vgm)
call psb_geasb (b,DESC_A ,info ,mold=vgm)



Example of Use for CPU/GPU (cont’d)

! set solver parameters and initial guess
...
! solve Ax=b with precond CG
call psb_krylov (’CG’,A,P,b,x,tol ,DESC_A ,info ,&
^^I& <further options>)
...
! cleanup storage
call P%free(info)
...
!
! leave PSBLAS
call psb_exit (ctxt)

And that’s all there is to it!



Parameter Setting for Preconditioner Setup

...
! build a V- cycle preconditioner with 1
! block - Jacobi sweep (with ILU (0) on the
! blocks ) as pre - and post -smoother , and
! 8 block - Jacobi sweeps (with ILU (0)
! on the blocks ) as coarsest solver
call P%init(’ML ’,info)
call P%set(’SMOOTHER_TYPE ’,’BJAC ’,info)
call P%set(’COARSE_SOLVE ’,’BJAC ’,info)
call P%set(’COARSE_SWEEPS ’,8,info)
call P% hierarchy_build (A,desc_A ,info)
call P% smoothers_build (A,desc_A ,info)
...



Parameter Setting for Preconditioner Setup (cont’d)

...
! build a W- cycle preconditioner with 2
! hybrid Gauss - Seidel sweeps as pre - and
! post -smoother , a distributed coarsest
! matrix , and MUMPS as coarsest -level solver
call P%init(’ML ’,info)
call P%set(’ML_CYCLE ’,’WCYCLE ’,info)
call P%set(’SMOOTHER_TYPE ’,’FBGS ’,info)
call P%set(’SMOOTHER_SWEEPS ’,2,info)
call P%set(’COARSE_SOLVE ’,’MUMPS ’,info)
call P%set(’COARSE_MAT ’,’DIST ’,info)
call P% hierarchy_build (A,desc_A ,info)
call P% smoothers_build (A,desc_A ,info)
...



Parameter Setting for Preconditioner Setup (cont’d)

...
! set 1-lev Restricted Additive Schwarz
! with overlap 2 and ILU (0) on the local
! blocks
call P%init(’AS ’,info)
call P%set(’SUB_OVR ’,2,info)
call P% build (A,desc_A ,info)
...

Example tests directories are available in the library both for
reading data from file and for solving a classic scalar elliptic PDE
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Weak scalability on Piz Daint operated by CSCS

∼ $ Poisson problem on the unit cube with 7-point stencil,
∼ $ Krylov Solver: Conjugate Gradient, with stopping criterion

∥rk∥ ≤ 10−6∥r0∥
∼ $ Preconditioner:

∼ AMG based on coupled smoothed aggregation based on
graph-matching

∼ V-cycle with 4 point-wise Jacobi sweeps as pre/post-smoother
(on the GPU), and 1 sweep of forward/backward Hybrid
Gauss-Seidel sweep as pre/post-smoother (on the CPU).
Parallel CG preconditioned with Block-Jacobi and ILU(0) at
the coarsest level.

Machine Configuration (hybrid Cray XC40/XC50 system): at 21.2 petaflops,
rank 6 in Top 500.

∼ $ 5704 compute nodes with Intel Xeon E5-2690 v3 CPUs per node and
NVIDIA Tesla P100 16GB, 1813 compute nodes equipped with 2 Intel
Xeon E5-2695 v4

∼ $ Aries routing and communications ASIC with Dragonfly network topology



Weak scalability on Piz Daint operated by CSCS
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Preliminary results on a CFD application inside Alya

From a Joint work with
Herbert Owen

Barcelona Super Computing Center

Bolund is an isolated hill
situated in Roskilde Fjord,

Denmark. An almost vertical
escarpment in the prevailing
W-SW sector ensures flow

separation in the windward edge
resulting in a complex flow field.

∼ $ Model: 3D incompressible
unsteady Navier-Stokes equations
for the Large Eddy Simulations of
turbulent flows,

∼ $ Discretization: low-dissipation
mixed FEM (linear FEM both for
velocity and pressure),

∼ $ Time-Stepping: non-incremental
fractional-step for pressure, explicit
fourth order Runge-Kutta method
for velocity.



Weak scalability on Marenostrum 4 - operated by BSC

∼ $ Solution of the pressure equation for 20 subsequent time-steps
with fixed preconditioner,

∼ $ Krylov Solver: Conjugate Gradient, with stopping criterion
∥rk∥ ≤ 10−6∥r0∥

∼ $ Preconditioner:
∼ AMG based on decoupled smoothed aggregation
∼ AMG based on coupled matching
∼ V-cycle with 1 sweep of forward/backward Hybrid Gauss-Seidel

sweep as pre/post-smoother and parallel CG preconditioned
with Block-Jacobi and ILU(0) at the coarsest level

Machine Configuration: at 11,14 Petaflops, rank 29 in Top 500

∼ $ Intel Xeon Platinum 8160 CPU at 2.10GHz (Skylake); 3456 nodes,
48 cores per node

∼ $ Intel Omni-Path high-performance interconnection network



Weak scalability on Marenostrum 4 - operated by BSC
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Work in progress within EoCoE: toward extreme scale

∼ $ New matching with multi-objective functions trading off
between maximum cardinality and maximum weight to treat
highly anisotropic problems,

∼ $ new smoothers for efficient hybrid CPU/GPU versions,
∼ $ efficient implementation of hybrid CPU/GPU version of

preconditioners setup phase,
∼ $ integration within KINSOL by LLNL for non-linear solvers,
∼ $ testing within Alya from BSC and Parflow from JSC
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