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Main Kernel in Computational/Data Science

Ax = b, A ∈ Rn×n (s.p.d.) x,b ∈ Rn

n >> 109

sparsity degree ≈ 99, 9%

Applications

numerical simulations: high-resolution models of subsurface �ows
in water/hydrocarbons/gas resource management
require discretization meshes with more than ten
billions (> 1010) dofs

network analysis: community detection in communication/social
networks, e.g., the mobile operator Vodaphone has
about 200 million (2× 108) customers and Google
indexes several billion (> 109) web-pages
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Krylov methods

A matrix is sparse when there are so many zeros

(nonzeros are typically O(n)) that it pays o� to take

advantage of them in the computer representation. James

Wilkinson

Methods of choice: Search for a solution by projection

xm ∈ Km(A, r0)

rm = b− Axm ⊥ Km(A, r0)

Km(A, r0) = Span{r0,Ar0,A2r0, . . . ,A
m−1r0}

Krylov subspace (growing with iteration until xm is good enough)
Conjugate Gradient (CG) for s.p.d. matrices (1952)

CG Convergence

‖ek‖A
‖e0‖A

≤ 2

(
a− 1

a + 1

)
, a =

√
µ(A) = λmax/λmin

ek = x− xk error at iteration k , λ eigenvalue of A
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Preconditioning

Solve the system B−1Ax = B−1b, with matrix B ≈ A−1 (left
preconditioner) such that:

µ(B−1A) << µ(A)

Solving 2D Poisson eq. (2500 dofs, µ(A) ≈ 1.5× 103)

IC(0): B = LLT with L incompl. Cholesky factor,
µ(B−1A) ≈ 2.2× 102



Preconditioning

Solve the system B−1Ax = B−1b, with matrix B ≈ A−1 (left
preconditioner) such that:

µ(B−1A) << µ(A)

Solving 2D Poisson eq. (2500 dofs, µ(A) ≈ 1.5× 103)

IC(0): B = LLT with L incompl. Cholesky factor,
µ(B−1A) ≈ 2.2× 102



Scalable (optimal) preconditioners

∼ $ µ(B−1A) ≈ 1, being independent of n (algorithmic scalability)

∼ $ the action of B−1 costs as little as possible, the best being
O(n) �ops (linear complexity)

∼ $ in a massively parallel computer, B−1 should be composed of
local actions, (implementation scalability, i.e., parallel
execution time increases linearly with n)

MultiGrid (MG) Preconditioners

show optimal behaviour for many s.p.d. matrices,
e.g., matrices coming from scalar elliptic PDEs

optimal preconditioner 6= fastest preconditioner
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Main Issues for e�ective parallel MG preconditioners

∼ $ single-processor performance

∼ $ memory occupation

∼ $ balance between computation and communication costs

∼ $ robustness

∼ $ �exibility and wide applicability

∼ $ preconditioner setup time vs. solve time

∼ $ re-use and e�cient updating for varying matrices

∼ $ ease of use, including interfacing with (legacy) application
codes
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MG Methods

Example: (symmetrized) V-cycle

∼ $ Pre-smoothing:
x = x + M−1(b − Ax)

∼ $ Residual restriction:
rc = PT (b − Ax)

∼ $ Solution on coarse grid:
Ace = rc , applying recursion

∼ $ Error interpolation and
solution update: x = x + Pe

∼ $ Post-smoothing:
x = x + (MT )−1(b − Ax)



Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)

Algebraic MultiGrid methods do not explicitly use the (eventual)
problem geometry but rely only on matrix entries to generate
coarse-grids by using characterizations of algebraic smoothness

Key issue in e�ective AMG for general matrices

error not reduced by the (chosen) smoother are called
algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

e�ective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi ) ∈ Range(P)
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Algebraic MultiGrid (AMG) Setup

Recursive application of a two-grid scheme

∼ $ setup of a convergent iterative solver M (the smoother)

∼ $ setup of a coarse vector space Rnc from Rn

∼ $ build the prolongation P from A

∼ $ compute coarse grid matrix Ac = PTAP

AMG based on Aggregation of dofs

Group the dofs into disjoint sets of aggregates Gj ; each aggregate
Gj corresponds to 1 coarse dof

Associated prolongation:

P := Pij =

{
wi if i ∈ Gj

0 otherwise

i = 1, . . . , n, j = 1, . . . , nc ,

or smoothed version of P (Van¥k 1996)
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Parallel AMG Setup: decoupled aggregationâ��

∼ $ embarrassingly parallel but it
may produce non-uniform
aggregates

∼ $ generally it yields good
results in practice on scalar
elliptic problems (Tuminaro
and Tong, 2000)
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MLD2P4: Parallel Preconditioners based on PSBLAS

∼ $ Initially developed as a package of algebraic multigrid Schwarz
preconditioners, extended to more general AMG
preconditioning within EoCoE

∼ $ Object-oriented design in Fortran 2003, layered sw architecture
on top of PSBLAS
=⇒ modularity and �exibility

∼ $ Clear separation between interface and implementation of
methods
=⇒ performance and extensibility

∼ $ Separated users' interface for setup of the multigrid hierarchy
and setup of the smoothers and solvers to have large �exibility
at each level

∼ $ Plugin for GPU exploitation (work in progress)

∼ $ C and Octave interfaces (work in progress)



MLD2P4 Software Architecture



Current version of MLD2P4 preconditioners

setup phase: GPU implementation is work in progress

∼ $ decoupled smoothed aggregation
∼ $ distributed or replicated coarsest matrix

solve phase: already available on GPU for some methods

∼ $ cycles: V, W, K
∼ $ smoothers: l1-Jacobi, hybrid (F/B) Gauss-Seidel,

block-Jacobi / additive Schwarz with LU, ILU
factorizations or sparse approximate inverses for
the blocks

∼ $ coarsest-matrix solvers: sparse LU, l1-Jacobi,
hybrid (F/B) Gauss-Seidel, block-Jacobi with
LU, ILU factorizations or sparse approximate
inverses of the blocks, iterative PCG

∼ $ LU factorizations for smoothers & coarsest-level
solvers: UMFPACK, MUMPS, SuperLU,
SuperLU_Dist



User's interface for preconditioner setup

∼ $ p%init(icontx,ptype,info): allocates and initializes the
preconditioner p, according to the preconditioner type chosen
by the user

∼ $ p%set(what,val,info [,ilev, ilmax, pos, idx]): sets
the parameters de�ning the preconditioner p, i.e., the value
contained in val is assigned to the parameter identi�ed by
what

∼ $ p%hierarchy_build(a,desc_a,info): builds the hierarchy
of matrices and restriction/prolongation operators for the
multilevel preconditioner p

∼ $ p%smoothers_build(a,desc_a,p,info[,am,vm,im]):
builds the smoothers and the coarsest-level solvers for the
multilevel preconditioner p

∼ $ p%build(a,desc_a,info[,am,vm,im]): builds the
preconditioner p (it is internally implemented by invoking the
two previous methods)



User's interface for preconditioner apply

∼ $ p%apply(x,y,desc_a,info [,trans,work]): computes
y = op(B−1) x , where B is a previously built preconditioner,
stored into p, and op denotes the preconditioner itself or its
transpose, according to the value of trans.
p%apply is called within the PSBLAS method psb_krylov

and hence it is completely transparent to the user.

∼ $ call p%free(p,info): deallocates the preconditioner data
structure p

∼ $ call p%descr(info, [iout]): prints a description of the
preconditioner p
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Example of use for CPU/GPU

! sparse matrix

type(psb_dspmat_type) :: A

! variable declaration needed for GPU running

type(psb_d_hlg_sparse_mat), target :: ahlg

type(psb_d_vect_gpu) :: vgm

type(psb_i_vect_gpu) :: igm

! sparse matrix descriptor

type(psb_desc_type) :: DESC_A

! preconditioner data

type(mld_dprec_type) :: P

...
! inizialize parallel environment

call psb_init(ictxt)

call psb_info(ictxt,iam,np)

...
! read and assemble matrix A and rhs b using PSBLAS facilities

...



Example of Use for CPU/GPU (cont'd)

! setup AMG preconditioner

call P%init('ML', info)

call P%set(<attribute>, value, info)

...
call P%set(<attribute>, value, info)

...
! build preconditioner

call P%hierarchy_build(A,DESCA,info)

! last three optional parameters needed for GPU unning

call P%smoothers_build(A,DESCA,info,am=ahlg, vm=vgm, im=igm)

! print description of the built preconditioner

call P%descr(info)

! conversions and vector assembly needed for GPU running

call DESCA%cnv(mold=igm)

call A%cscnv(info,mold=ahlg)

call psb_geasb(x,DESC_A,info,mold=vgm)

call psb_geasb(b,DESC_A,info,mold=vgm)



Example of Use for CPU/GPU (cont'd)

! set solver parameters and initial guess

...

! solve Ax=b with precond CG

call psb_krylov('CG',A,P,b,x,tol,DESC_A,info,...)

...

! cleanup storage

call P%free(info)

...

!

! leave PSBLAS

call psb_exit(ictxt)



Parameter Setting for Preconditioner Setup

...

! build a V-cycle preconditioner with 1 block-Jacobi sweep

! (with ILU(0) on the blocks) as pre- and post-smoother,

! and 8 block-Jacobi sweeps (with ILU(0) on the blocks)|
! as coarsest solver

call P%init('ML',info)

call_P%set('SMOOTHER_TYPE','BJAC',info)

call P%set('COARSE_SOLVE','BJAC',info)

call P%set('COARSE_SWEEPS',8,info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

...



Parameter Setting for Preconditioner Setup (cont'd)

...

! build a W-cycle preconditioner with 2 hybrid Gauss-Seidel sweeps

! as pre- and post-smoother, a distributed coarsest

! matrix, and MUMPS as coarsest-level solver

call P%init('ML',info)

call P%set('ML_CYCLE','WCYCLE',info)

call P%set('SMOOTHER_TYPE','FBGS',info)

call P%set('SMOOTHER_SWEEPS',2,info)

call P%set('COARSE_SOLVE','MUMPS',info)

call P%set('COARSE_MAT','DIST',info)

call P%hierarchy_build(A,desc_A,info)

call P%smoothers_build(A,desc_A,info)

...



Parameter Setting for Preconditioner Setup (cont'd)

...

! set 1-lev Restricted Additive Schwarz

! with overlap 2 and ILU(0) on the local blocks

call P%init('AS',info)

call P%set('SUB_OVR',2,info)

call P%bld(A,desc_A,info)

...

Example tests directories are available in the library both for
reading data from �le and for solving a classic scalar elliptic PDE
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Par�ow Model

Simulations of subsurface �ow for regional hydrology studies

Richard's equation

Filtration through variably saturated porous media for
incompressible �ows (3D model based on Darcy's law):

∂(Φs(p))

∂t
+∇ · u = f

u = −K∇(p − z)

∼ $ implicit time integration method

∼ $ �nite di�erence discretization of spatial operator on a
structured Cartesian mesh

∼ $ Newton-Krylov solver for non-linear algebraic equation coupled
with a linear geometric preconditioner

∼ $ MPI-based parallel code written in C



Test cases for PSBLAS and MLD2P4

Simpli�ed steady-state model

−∇ ·K∇p = f

on unit cube, with no-�ow boundary conditions

∼ $ discretization obtained by a PSBLAS
code reproducing a Matlab mini-app
provided by JSC

∼ $ isotropic conductivity tensor

∼ $ cartesian grid with uniform re�nement
along the coordinates for increasing mesh
size

∼ $ hepta-diagonal spd matrices



Weak scalability on Marenostrum 4 - operated by BSC

Selected PSBLAS/MLD2P4 preconditioned iterative solvers:

∼ $ Krylov Solver: Conjugate Gradient, with stopping criterion
‖rk‖ ≤ 10−6‖r0‖

∼ $ Preconditioner:

∼ AMG based on decoupled smoothed aggregation
∼ V-cycle with 1 sweep of forward/backward Hybrid Gauss-Seidel

sweep as pre/post-smoother and parallel CG preconditioned
with Block-Jacobi and ILU(0) at the coarsest level

Machine Con�guration: at 11,14 Peta�ops, rank 29 in Top 500

∼ $ Intel Xeon Platinum 8160 CPU at 2.10GHz (Skylake); 3456 nodes,
48 cores per node

∼ $ Intel Omni-Path high-performance interconnection network



Weak scalability on Marenostrum 4 - operated by BSC

Row-block distribution of the matrix obtained
by a 3d decomposition of the grid

matrix with 256× 103 rows (dofs) per core
up to 4× 109 dofs on 16384 cores
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Weak scalability on Piz Daint operated by CSCS

Selected PSBLAS/MLD2P4 preconditioned iterative solvers:

∼ $ Krylov Solver: Conjugate Gradient, with stopping criterion
‖rk‖ ≤ 10−6‖r0‖

∼ $ Preconditioner:

∼ AMG based on decoupled smoothed aggregation
∼ V-cycle with 2 point-wise Jacobi sweeps as pre/post-smoother

and 10 sweeps of parallel Block-Jacobi, with approximate
inverse applied to the blocks at the coarsest level

Machine Con�guration (hybrid Cray XC40/XC50 system): at 21.2
peta�ops, rank 6 in Top 500.

∼ $ 5704 compute nodes with Intel Xeon E5-2690 v3 CPUs per node
and NVIDIA Tesla P100 16GB, 1813 compute nodes equipped with
2 Intel Xeon E5-2695 v4

∼ $ Aries routing and communications ASIC with Dragon�y network
topology



Weak scalability on Piz Daint operated by CSCS

Row-block distribution of the matrix obtained
by a 3d decomposition of the grid

matrix with 16× 106 rows (DOFs) per core
up to 8× 109 DOFs on 512 GPUs



Work in progress within EoCoE: toward extreme scale

∼ $ new coupled aggregation scheme based on maximum weight
matching in graphs

∼ $ new smoothers for e�cient hybrid CPU/GPU versions

∼ $ e�cient implementation of hybrid CPU/GPU version of
preconditioners setup phase

∼ $ integration within KINSOL by LLNL for non-linear solvers

∼ $ testing within Alya from BSC and Par�ow from JSC
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