PSBLAS 3.9 & AMG4PSBLAS 1.2

Sparse Computation & lterative Solvers for HPC

Salvatore Filippone — salvatore.filippone@uniroma2.it

dedlii 24

Exascale Framework for Digital Twins of the Human Body

S. Filippone PSCToolkit dealii.X 1/96

PSCToolkit

s

PSCToolkit

funding and acknowledgments

#

Pasqua D'Ambra, Fabio Durastante, Salvatore Filippone,
Consiglio Nazionale delle Ricerche Universita di Pisa Universita di Roma Tor Vergata
Istituto per le Applicazioni del Calcolo CNR CNR — Istituto per le Applicazioni del

“M. Picone” Istituto per le Applicazioni del Calcolo Calcolo “M. Picone”
“M. Picone” Cranfield University (UK)

Lawrence Berkeley Lab

dealii>{

-«
y ICS

Centro Nazionale di Ricerca in HPC, ~Z E C H European | European Union funding
Big Data and Quantum Computing L Commission for Research & Innovation
Project ID: 824158

S. Filippone PSCToolkit dealii.X 2/96

The PSCToolkit Team

Contributors:

@ Marco Feder @ Davide Barbieri
@ Salvatore Filippone @ Simone Staccone @ Alessandro Fanfarillo
@ Fabio Durastante @ Luca Pepé Sciarria o Alfredo Buttari
e Pasqua D'Ambra @ Soren Rasmussen @ Ambra Abdullahi Hassan
@ Zaak Beekman @ Thomas Amestoy
@ Andrea Di lorio @ Michele Martone
@ Daniela di Serafino @ Michele Colajanni
@ Theophane Loloum @ Fabio Cerioni
@ Dimitri Walker @ Stefano Maiolatesi

) @ Dario Pascucci
Available from https://psctoolkit.github.io/

S. Filippone PSCToolkit dealii.X 3/96

https://psctoolkit.github.io/

= PSCToolkit: PSBLAS Parallel Sparse BLAS

Main features:

@ Designed for iterative solvers; but, support for mesh

handling; e
e Main application: differential problems; @

@ Data allocation through graph partitioning;

@ Support for overlap;

Lots of previous work in standards for sparse and dense linear algebra (see Duff et al. [1997],
Blackford and et al. [2002]); described in Filippone and Colajanni [2000], Filippone and Buttari
[2012]; version 3.9.0 to be released by year's end.

Available from https://psctoolkit.github.io/products/psblas

RPMs available for Fedora and CentOS; SPACK builds under development, will be available
with the next formal release.

S. Filippone PSCToolkit dealii.X 4 /96

https://psctoolkit.github.io/products/psblas

Library Structure

[Application]

7777777777777777777 Fortran

interface

interface

7777777777777777777 Internal

interface

. [Serial

S. Filippone

l Sparse BLAS

PSCToolkit

autotools

./configure \

--with-blas=...

--prefix=...
make
make install

v

mkdir build

cd build

cmake

make; make install

.

dealii.X

5/96

Why PSBLAS?

Sparse Matrices and Krylov methods

A matrix is sparse when there are so many zeros (nonzeros are typically O(n)) that it pays off
to take advantage of them in the computer representation. James Wilkinson

S. Filippone PSCToolkit dealii.X

Why PSBLAS?

Sparse Matrices and Krylov methods

A matrix is sparse when there are so many zeros (nonzeros are typically O(n)) that it pays off
to take advantage of them in the computer representation. James Wilkinson

Methods of choice: Search for a solution by projection
Xm € Km(A,ro)
rm=b—Axm L Kmn(Aro)
Km(A, ro) = Span{rg, Arg, A’rg, ..., A" 1ry}

Krylov subspace (growing with iteration until x,, is good enough)

PSCToolkit dealii.X

S. Filippone

Why PSBLAS?

Sparse Matrices and Krylov methods

A matrix is sparse when there are so many zeros (nonzeros are typically O(n)) that it pays off
to take advantage of them in the computer representation. James Wilkinson

Methods of choice: Search for a solution by projection
Xm € Km(A,ro)
rm=b—Axm L Kmn(Aro)
Km(A, ro) = Span{rg, Arg, A’rg, ..., A" 1ry}
Krylov subspace (growing with iteration until x,, is good enough)
. CG Convergence

e a—1
H kHA < 2() R a = \/M(A) =)\max/Amin

HeoHA o a+1

ex = X — X error at iteration k, \ eigenvalue of A

S. Filippone PSCToolkit dealii.X 6 /96

An example Conjugate Gradient method

Compute r0) = p — Ax(©) call psb_geaxpby(one,b,zero,r,desc_a,info)
rho = zero
fori=1,2,... iterate: do it = 1, itmax
solve Mz(i—1) = ((i—1) call psb_spsm(one,L,r,zero,w,desc_a,info)
call psb_spsm(one,U,w,zero,z,desc_a,info)
pi—1 ::rU_l)TzU_l) rho_old = rho; rho = psb_gedot(r,z,desc_a,info)
ifi=1 if (it == 1) then
p(U = 2(0) call psb_geaxpby(one,z,zero,p,desc_a,info)
else else
Bi—1 = pi—1/pi—2 beta = rho/rho_old
pU)::zU’1)+—ﬁp_1pU*1) call psb_geaxpby(one,z,beta,p,desc_a,info)
endif endif
q(o:: ApU) call psb_spmm(one,A,p,zero,q,desc_a,info)
a;::p;_l/p(OTq(D sigma = psb_gedot(p,q,desc_a,info); alpha = rho/sigma
x(N = XU_1)+»a;pU) call psb_geaxpby(alpha,p,one,x,desc_a,info)
r) = ﬂi_l)—-a;q“) call psb_geaxpby(-alpha,q,one,r,desc_a,info)
Check convergence: ||r()|2 < ¢€||b|2 rn2 = psb_genrm2(r,desc_a,info)

bn2 = psb_genrm2(b,desc_a,info)

err = rn2/bn2

if (err.lt.eps) exit iterate
end enddo iterate

S. Filippone PSCToolkit dealii.X 7/96

Preconditioning

Solve the system B~1Ax = B~1b,
with matrix B ~ A™1 (left
preconditioner) such that:

u(B™TA) << u(A)

S. Filippone

relative error (euclidean norm)

Solving 2D Poisson eq.
(2500 dofs, p(A) ~ 1.5 x 10%)

Conjugate Gradient convergence

10°

107

10-10 L

No Preconditioner
=== |C(0)

PSCToolkit

dealii.X

PSBLAS Contents

Parallel Environment handling;
Computational kernels:

o Sparse matrix by dense vector product; 3 \ |\ "-l-u #

e Sparse triangular systems solution; A t‘“ - >
e Vector and matrix norm; \“ - =R ‘ -,"j{/ ~
o Dense vector sums; o &

e Dot products;

Data exchange and update;

Data Management;

Preconditioner setup;

[terative solvers

S. Filippone PSCToolkit dealii.X 9/96

Table of Contents

@ PSBLAS

@ Parallel Environment

© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit

dealii.X

Parallel Environment

We defined our parallel environment:
@ Implemented in pure MPI;
@ Subset of MPl communication modes;
e MPI directly available when/if needed;
e Fortran generic interfaces available (no type mismatch!)
Basic operations:
o Initialize/close a process grid (parallel machine environment handling)
@ Point-to-point send/receive

@ Collective operations: Broadcasts, Reductions, Scan-sum;

S. Filippone PSCToolkit dealii.X 11 /96

Parallel Environment

Each context (MPI communicator) identifies a virtual parallel machine:

call psb_init(ctxt [, np, basectxt, ids])
call psb_info(ctxt,iam,np)
call psb_exit(ctxt [, close=.true.])

Rules:
@ psb_init must be called before anything else;

e Creates a new communicator: the library communication is cleanly separated from the
application;

o It is legal to specify a (permuted) subset of the available processes;

MPI interoperability

mpicomm = psb_get_mpi_comm(ctxt)
mpirank = psb_get_mpi_rank (ctxt, id)

S. Filippone PSCToolkit dealii.X 12 /96

Parallel Environment: Hello World!

program hello _world
use psb_base mod
implicit none

type(psb _ctxt type) :: ctxt
integer(psb_ipk) :: iam, np
character(len=20) :: name

call psb init(ctxt)
call psb info(ctxt,iam,np)
Writing name='helloworld’

~if (iam == psb_root) then
helloworld.£90: write (*,%) "Welcome to PSBLAS version:

',psb_version string

write (%,%) 'This is the ', trim(name),’ sample program’
write (*,%) 'l am process ',iam, 'of ', ,np

else
write (*,%) '] am process ',iam, 'of ', np

end if

call psb exit(ctxt)

stop

end program hello world

S. Filippone PSCToolkit

= The C Interface

The PSBLAS library comes with a C interface.

The general rule for switching between the Fortran and C variants of the same PSBLAS routine
is

call psb_<something>(...) — psb_c_[PRECISION]<something>(...);

The routines defining the parallel environment are now:

psb_i_t psb_c_init ();

void psb_c_info(psb_i_t ctxt, \
psb_i_t *iam, psb_i_t *np);

void psb_c_exit(psb_i_t ctxt);

The headers for these routines are in the psb_base_cbind.h file.

S. Filippone PSCToolkit dealii.X 14 /96

The C version of the Hello World!

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

#include "psb base cbind.h"

int main(int argc, char sargv[])

int ctxt, iam, np;
char name[]="c_helloworld";

ctxt = psb ¢ init();
psb ¢ info(ctxt,&iam,&np);

if (iam = 0)
printf("This is the %s sample program\n" name);
printf ("l am process %d of %d\n" ,iam,np);

} else {
printf ("l am process %d of %d\n" ,iam,np);

psb ¢ exit(ctxt);

}

S. Filippone PSCToolkit dealii.X

Table of Contents

@ PSBLAS

o Computational kernels

© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X 16 /96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

o (Parallel) Sparse matrix by Vector product;

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 17 /96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

o (Parallel) Sparse matrix by Vector product;

@ Sparse triangular system solution;

Note: we also need boundary data exchange and mesh management:

S. Filippone PSCToolkit dealii.X 18 /96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

o (Parallel) Sparse matrix by Vector product;
@ Sparse triangular system solution;

n
@ Dot products; <X,y >= ZXi}/i
i=1

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 /96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:
o (Parallel) Sparse matrix by Vector product; IIx]l1 = Z |xi]

@ Sparse triangular system solution; i

@ Dot products; , 3
@ Vector norms; 1x]]2 = Z |xi |
1
Iloe = ma x|

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 /96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:
o (Parallel) Sparse matrix by Vector product;
@ Sparse triangular system solution; I|All1 = maxz |lai j
i =
@ Dot products; !
e Vector norms; IA]l 0o = miaxZ |aj j
J

@ Matrix norms;

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X

18 /96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

o (Parallel) Sparse matrix by Vector product;
@ Sparse triangular system solution;
@ Dot products;
@ Vector norms;
@ Matrix norms;

Scaled sums (AXPY-like);
Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 /96

Computational kernels

xTy (x'y): dot = psb_gedot(x,y,desc_a,info)
y < ax + fBy: call psb_geaxpby(alpha,x,beta,y,desc_a,info)
max; |x;|: amax = psb_geamax(x,desc_a,info)
> |xi|: asum = psb_geasum(x,desc_a,info)
[[||2: nrm2 = psb_genrm2(x,desc_a,info)
|[Allsc nrmi = psb_spnrmi(A,desc_a,info)
y < aAx + fy: call psb_spmm(alpha,A,x,beta,y,desc_a,info[,trans])
y < aDT x4+ By: call psb_spsm(alpha,T,x,beta,y,desc_a,info[,trans,unitd])
Note: T is a triangular AND block diagonal matrix (i.e.: Block-Jacobi or Hybrid GS type preconditioners)

S. Filippone PSCToolkit dealii.X 19 /96

Computational kernels

xTy (x'y): dot = psb_gedot(x,y,desc_a,info)

y < ax + fBy: call psb_geaxpby(alpha,x,beta,y,desc_a,info)
max; |x;|: amax = psb_geamax(x,desc_a,info)
> |xi|: asum = psb_geasum(x,desc_a,info)

[[||2: nrm2 = psb_genrm2(x,desc_a,info)

|[Allsc nrmi = psb_spnrmi(A,desc_a,info)
y aATx + fBy: call psb_spmm(alpha,A,x,beta,y,desc_a,info,trans="T’)
y < aDT"x + By: call psb_spsm(alpha,T,x,beta,y,desc_a,info,trans="T’ [,unitd])

Note: T is a triangular AND block diagonal matrix (i.e.: Block-Jacobi or Hybrid GS type preconditioners)

S. Filippone PSCToolkit dealii.X 19 /96

& Computational kernels - C Interfaces

The routines are defined for each data type, e.g., in the double case
XTy: psb_d tpsb c dgedot(psb c dvector xx, psb_c_dvector y, psb_c_descriptor xdesc_a);

y <= ax+ fy: psb_i tpsb c dgeaxpby(psb_d t alpha, psb_c_dvector *x,
psb_d t beta, psb_c_dvector xy, psb_c_descriptor *desc_a);

max; [xi|: psb_d_tpsb c dgeamax(psb_c_dvector xx, psb_c_descriptor *desc_a);
> |xil: psb_d_tpsb ¢ dgeasum(psb_c_dvector x, psb_c_ descriptor *desc_a);
[x][2: psb_d tpsb c dgenrm2(psb c dvector xx, psb_c_descriptor *desc_a);
[[Alloc psb_d_tpsb c dspnrmi(psb_c_dspmat *A, psb_c descriptor xdesc_a);

y <= aAx+ fBy: psb_i tpsb c dspmm(psb_d t alpha, psb_c_dspmat *A,
psb_c_dvector x, psb_d_t beta, psb_c_dvector xy, psb_c_descriptor *desc_ a);

Note: The headers for these functions are in the file psb_c_dbase.h, psb_c_cbase.h, psb_c_sbase.h,
psb_c_zbase.h, they can be included all together by including psb_base_cbind.h.

S. Filippone PSCToolkit dealii.X 20 /96

E

Computational kernels - C Interfaces

The routines are defined for each data type, e.g., in the double case

xTy:

y < ax + By:

max; |xi:
2o Ixil:
[Ix[[2:
[[Alloo

psb_d tpsb c dgedot(psb c dvector xx, psb _c dvector y, psb c_descriptor xdesc_a);

psb_i tpsb c dgeaxpby(psb_d t alpha, psb_c_dvector *x,
psb_d t beta, psb_c_dvector xy, psb_c_descriptor *desc_a);

psb_d tpsb ¢ dgeamax(psb c_dvector x, psb_c_descriptor *desc_a);
psb_d tpsb ¢ dgeasum(psb_c_dvector xx, psb_c_descriptor *desc_a);
psb_d tpsb c dgenrm2(psb c_dvector xx, psb_c descriptor xdesc a);

psb_d tpsb c dspnrmi(psb_c dspmat %A, psb c descriptor *desc_a);

y — aATx + By: psb_i tpsb c dspmm opt(psb_d_t alpha,

psb _c dspmat #A, psb _c dvector *x, psb_d t beta, psb_c dvector *y,
psb_c_descriptor *desc_a, char xtrans, bool doswap);

Note: The headers for these functions are in the file psb_c_dbase.h, psb_c_cbase.h, psb_c_sbase.h,
psb_c_zbase.h, they can be included all together by including psb_base_cbind.h.

S. Filippone PSCToolkit dealii.X 20 /96

E

Computational kernels - C Interfaces

The routines are defined for each data type, e.g., in the double case

xTy:

y < ax + By:

max; |xi:
> Ixil:
[Ix[[2:
[[Alloo

psb_d tpsb c dgedot(psb c dvector xx, psb_c_dvector y, psb_c_descriptor xdesc_a);

psb_i tpsb c dgeaxpby(psb_d t alpha, psb_c_dvector *x,
psb_d t beta, psb_c_dvector xy, psb_c_descriptor *desc_a);

psb_d tpsb c dgeamax(psb c_dvector x, psb_c_descriptor *desc_a);
psb_d tpsb ¢ dgeasum(psb_c_dvector xx, psb_c_descriptor *desc_a);
psb d tpsb c dgenrm2(psb c dvector *x, psb_c descriptor *desc_a);

psb_d tpsb c dspnrmi(psb_c dspmat %A, psb c descriptor *desc_a);

y < aDT x4+ py: psb ¢ dspsm(psb_d t alpha, psb_c_dspmat *T,

psb_c_dvector x, psb_d_t beta, psb_c_dvector xy, psb_c_descriptor *desc_ a);

Note: The headers for these functions are in the file psb_c_dbase.h, psb_c_cbase.h, psb_c_sbase.h,
psb_c_zbase.h, they can be included all together by including psb_base_cbind.h.

S. Filippone PSCToolkit dealii.X 20 /96

An example Conjugate Gradient method

Template CG PSBLAS Implementation
Compute @) = b — Ax(©) call psb_geaxpby(one,b,zero,r,desc_a,info)
rho = zero
fori=1,2,... iterate: do it = 1, itmax
solve Mz(i—1) = ((i—1) call psb_spsm(one,L,r,zero,w,desc_a,info)
call psb_spsm(one,U,w,zero,z,desc_a,info)
pi—1 = (ffl)Tz("fl) rho_old = rho
rho = psb_gedot(r,z,desc_a,info)
ifi=1 if (it == 1) then
p(l) =209 call psb_geaxpby(one,z,zero,p,desc_a,info)
else else
Bi—1 = pi—1/Pi—2 beta = rho/rho_old
p(i) = 2(i-1) + ,8;_1p(i_1) call psb_geaxpby(one,z,beta,p,desc_a,info)
endif endif
q(i) = Ap(i) call psb_spmm(one,A,p,zero,q,desc_a,info)
aj = p,-_l/p(i)Tq(i) sigma = psb_gedot(p,q,desc_a,info)
alpha = rho/sigma
x() = x(i=1) + a,*p('.) call psb_geaxpby(alpha,p,one,x,desc_a,info)
A0 = pi=1) _ a,—q(i) call psb_geaxpby(-alpha,q,one,r,desc_a,info)

Check convergence:

Hr(’)Hz < e€|lb]l2 rn2 = psb_genrm2(r,desc_a,info)
bn2 = psb_genrm2(b,desc_a,info)
err = rn2/bn2
if (err.lt.eps) exit iterate

end enddo iterate

Exercise: write the corresponding C version for double vectors and matrices

S. Filippone 21 /96

Table of Contents

@ PSBLAS

@ Data Distribution

© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X 22 /96

Data Distribution

Guiding principle: “Owner computes” paradigm. Given an index space 1... N (and vectors
defined on this index space):

© The index space is partitioned among processes;

@ Each index has a “home” process;

© The “home” process holds the authoritative value of the corresponding vector entry;

@ The "home” process performs the arithmetic operations needed to set the value of a vector entry;
@ On each process, the set of “resident” indices will have a local numbering;

@ There is a map between global and local indices; the map is (usually) one-to-one when restricted
to “home" processes;

@ There is a certain amount of redundancy due to "“halo” indices (see below)

S. Filippone PSCToolkit dealii.X 23 /96

3000

2500

2000

nz=10193

24 /96

dealii.X

PSCToolkit

....Ia.
L o¥

. mrMmethw f

3

c
.2
)
>
o)
=
)
e
[
(qv]
4+
(T
[

Mesh partition < Graph partition < Matrix row partition

Finding the optimal decomposition is equivalent to a graph partition problem (NP-complete).

S. Filippone

Data Distribution

Isomorphism between sparse matrix (pattern) and a graph: G = {V/, E} where
P oy A

s T

vV = {vl,...,v,,}
E C VxV

From a sparse matrix to a graph:
@ To each row i there corresponds a vertex v;;
@ To each coefficient aj; there corresponds an edge
(vi> vj);
From a graph to a sparse matrix (pattern): same as
above.

Note: numbering of vertices induces a different pattern (symmetric permutation
S. Filippone PSCToolkit

Communication descriptors

What is a communication descriptor?
An opaque object that:

o Keeps track of the parallel machine (ctxt);
o Is associated with a discretization topology (mesh graph plus discretization stencil);
@ Stores the mapping of the index space onto the parallel machine;

e Contains all the data necessary to implement a neighbour-to-neighbour data exchange (or:
halo data exchange; or: ghost cell update; or: persistent neighborhood all-to-all on a
virtual distributed graph topology)

call psb_halo(x,desc)

S. Filippone PSCToolkit dealii.X 26 /96

Communication descriptors

What is a communication descriptor?
An opaque object that:

Keeps track of the parallel machine (ctxt);

Is associated with a discretization topology (mesh graph plus discretization stencil);

Stores the mapping of the index space onto the parallel machine;

Contains all the data necessary to implement a neighbour-to-neighbour data exchange (or:

halo data exchange; or: ghost cell update; or: persistent neighborhood all-to-all on a

virtual distributed graph topology)

psb_i_t psb_c_dhalo(psb_c_dvector *x,
psb_c_descriptor #*desc_a);

S. Filippone

PSCToolkit

dealii.X

26 /96

Table of Contents

@ PSBLAS

@ Sparse matrices

© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X 27 /96

Storage schemes

Coordinate storage:
M Rows;
N Columns;
NZ Non zeroes;
IA(1:NZ) Row indices;
JA(1:NZ) Column indices;
AS(1:NZ) Coefficients;
Note: by definition of number of rows we have 1 < IA(i) < M, likewise for the columns.

S. Filippone PSCToolkit dealii.X 28 /96

Storage schemes

ole ° Eemensary |@[@]0@[0]0] [0]@] .. |
“le* o e colivcary [1]2, 813928 - |
o0 ° D Rowidxaray [1] 1] 1] 2[2[2[3[3] ... |
o o0 e (L]
oo °
[] (L]
0000 °
o []
° °
[] o o
° °

do i=1,nz

ir = ia(i)

jc = ja(i)

y(ir) = y(ir) + as(i)*x(jc)
enddo

S. Filippone PSCToolkit dealii.X 29 /96

Storage schemes

Compressed Storage by Rows:
M Rows;
N Columns;
IA(1:M+1) Pointers to row start;
JA(1:NZ) Column indices;
AS(1:NZ) Coefficients;

S. Filippone

PSCToolkit

dealii.X

30/96

Storage schemes

oo D Elements Aray | @ [@[@[@[0] [0]@] ..]
“lo* o e Colidwaray 1] 2] 8] 1] 3] 9] 2] 8] - |
00 ° °
L o0 LILIL) : L Row pointer ‘ 1‘ 4‘7‘1q 14‘ ‘
° N0
D000 °
° °
° °
° o |o
° °

do i=1,m

do j=ia(i), ia(i+1)-1
y(i) = y(i) + as(j)*x(ja(j))
enddo

enddo

S. Filippone PSCToolkit dealii.X 31/96

Are you unsure what to use?

S. Filippone PSCToolkit dealii.X 32/96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

S. Filippone PSCToolkit dealii.X 32/96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

Facts:
o Different computer architectures are best exploited by different formats;

o Different formats are suited to different operations (and we need them all);

S. Filippone PSCToolkit dealii.X 32/96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

Facts:
o Different computer architectures are best exploited by different formats;

o Different formats are suited to different operations (and we need them all);

Requirements (put your library developer's hat on):

@ We want to be able to change in response to machine changes (might be done at compile
time);

e We want to be able to change in response to use patterns (need to change at run time)
o We want to switch among formats, some of them unkonwn at compile time;

Essentially, we want objects to switch between different types at runtime

S. Filippone PSCToolkit dealii.X 32/96

Design Patterns to the Rescue

We want maximum freedom, flexibility, maintainability and performance
we like to have our cake and eat it too

= Need to use Design Patterns
o STATE;
e BUILDER;
e MEDIATOR,;
e PROTOTYPE.

For details see:
o A. Buttari, S. Filippone, ACM TOMS, 2012
@ V. Cardellini, S. Filippone and D. Rouson, Scientific Programming, 2014

All problems in computer science can be solved by another level of indirection —
Butler Lampson

S. Filippone PSCToolkit dealii.X 33 /96

We have also GPU support!

Our design allows us to manage data on GPUs in a
transparent way Cardellini et al. [2014], Filippone et al.
[2017]

TITAN RTX

S. Filippone PSCToolkit dealii.X

SpMV performance

120000

100000

80000

60000

MFLOPS

40000

20000

0

I

&

S. Filippone

SpMV Performance

— AMD 7750
—— XeonX5650
Xeon E5-1630
GTX 285
C2070
K40
— P100

V100

Y R N
2 & & & @ "
Qb Qb Qé Qts Qb waz Qb'?’

&&EE

PSCToolkit

35/96

Table of Contents

@ PSBLAS

@ Data Management
© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X 36 /96

Data Management

How do we set up a descriptor/sparse matrix?

S. Filippone PSCToolkit

dealii.X 37 /96

Data Management

How do we set up a descriptor/sparse matrix?

First step, we have to decide a distribution of the index space of our problem, and how we are
going to specify it:

@ Assign a process to each index;
@ Assign a list of indices to each process;

© Assign a bunch of consecutive indices to each process;
Q@ Other;

This is done with the initialization routine psb_cdall

S. Filippone PSCToolkit dealii.X 37 /96

Data Management

How do we set up a descriptor/sparse matrix?
First step, we have to decide a distribution of the index space of our problem, and how we are

going to specify it:
@ Assign a process to each index;
@ Assign a list of indices to each process;
© Assign a bunch of consecutive indices to each process;
© Other;

For the C interface, we have different allocation routines for the different styles:

psb i t psb ¢ cdall vg(psb | t ng, psb i t xvg,
psb_c_ ctxt ctxt, psb_c_ descriptor *desc_a);
psb i t psb ¢ cdall vli(psb i t nl, psb | t *vl,
psb_c_ ctxt ctxt, psb_c_descriptor *desc_a);
psb_i t psb ¢ cdall nl(psb_i_t nl,

psb_c_ ctxt ctxt, psb_c_ descriptor xdesc_a);

S. Filippone PSCToolkit dealii.X 37 /96

Descriptor Allocation

! Assign a process to each index, e.g. via
! (serial) Metis

if (iam == 0) then

call bld_mtpart(.)
call getv_mtpart(v)

endif

call psb_bcast(ctxt,v,root=0)
call psb_cdall(ctxt,desc,info,vg=v)

Global size: m = size(v)

Information on how to obtain and use Metis and its parallel version can be found at
http://glaros.dtc.umn. edu/gkhome/metis/metis/overview

S. Filippone PSCToolkit dealii.X 38 /96

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Descriptor Allocation

! Assign a process to each index, e.g. via
! (serial) Metis

if (iam == 0) then

call bld_mtpart(.)
call getv_mtpart(v)

endif

call psb_bcast(ctxt,v,root=0)
call psb_cdall(ctxt,desc,info,vg=v)

Global size: m = size(v)
The corresponding C style allocation is obtained using

psb i t psb c cdall vg(psb | t ng, psb i t xvg,
psb ¢ ctxt ctxt,
psb ¢ descriptor xdesc_a);

S. Filippone PSCToolkit dealii.X 38 /96

Descriptor Allocation

Assign a bunch of contiguous indices to each process

]
call psb_cdall (ctxt,desc,info,nl=nl)

There is NO requirement that the NLs be evenly distributed,;

Global size: m = psb_sum(ctxt,nl)

dealii.X 39 /96

S. Filippone PSCToolkit

Descriptor Allocation

!
call psb_cdall (ctxt,desc,info,nl=nl)

There is NO requirement that the NLs be evenly distributed,;
Global size: m = psb_sum(ctxt,nl)

The corresponding C style allocation is obtained using

psb i t psb ¢ cdall nl(psb_i t nl
psb_c_ctxt ctxt, psb_c_ descriptor xdesc_a);

Assign a bunch of contiguous indices to each process

S. Filippone PSCToolkit dealii.X 39 /96

Descriptor Allocation

! Build a 1list of locally owned indices
do i=1,nl
v1(i) = get_ith_index(....)
end do
call psb_cdall(ctxt,desc,info,vl=vl)
There is NO requirement for the indices to be contiguous, or even ordered.
Global size: m = psb_sum(ctxt,size(vl))

S. Filippone PSCToolkit dealii.X 39 /96

Descriptor Allocation

! Build a 1list of locally owned indices
do i=1,nl
v1(i) = get_ith_index(....)
end do
call psb_cdall(ctxt,desc,info,vl=vl)
There is NO requirement for the indices to be contiguous, or even ordered.
Global size: m = psb_sum(ctxt,size(vl))
The corresponding C style allocation is obtained using

psb i t psb ¢ cdall vi(psb i t nl, psb | t xvl,
psb_c_ctxt ctxt, psb_c_ descriptor *desc _a);

S. Filippone PSCToolkit dealii.X 39 /96

Descriptor Allocation

! Build an arbitrary strategy

interface
subroutine parts(glob_index ,nrow,np,pv,nv)
integer, intent (in) :: glob_index ,np,nrow
integer, intent (out) :: nv, pv(*)

end subroutine parts
end interface
call psb_cdall(ctxt,desc,info,m=mg,parts=parts)

Here we may even assign an index to multiple processes (aka overfap)!
Global size: m = mg

S. Filippone PSCToolkit

dealii.X

40/ 96

Descriptor Allocation

At the end of the call to psb_cdall the descriptor enters into the BUILD state.

Note: we have just specified (implicitly) a mapping between the GLOBAL numbering into a
LOCAL numbering (for the local subdomain)

I— (P,J)

where
o [isaglobalindex 1</ <M
@ P is a process index 0 < P < NP
@ Jisalocalindex1 < J<NL

The mapping is complete (On each process P we can now answer whether / belongs here, and
we can retrieve the global / corresponding to local J)
BUT

there is no description (yet) of the connections/interactions among subdomains.

S. Filippone PSCToolkit dealii.X 41 /96

Data Management

Second step, we have to describe the mesh topology. This may be done in two ways:
@ Explicitly, with a list of edges;

@ Implicitly, while building a sparse matrix (whose pattern is isomorphic to the graph).
This works as long as the descriptor stays in the BUILD state.

S. Filippone PSCToolkit dealii.X 42 /96

Data Management - C Interface

The procedure with the C interface:

for(int i = 0; i < n; i++){
if ("this index belongs to me’){
nz = 'number of neighbours of i’
ia = 'vector of size nz with all values i’
ja = "list of the nz neighbours of i’
info = psb ¢ cdins(nz, ia, ja, desc_a);

S. Filippone PSCToolkit dealii.X 43 /96

Data Management

End of build stage:

call psb_cdasb(desc,info)
or, in the C interface,
info = psb ¢ cdasb(desc);

The descriptor has now entered the ASSEMBLED state, and may be used for actual data
exchanges.

What happened:
@ The mapping now identifies local and HALO indices;

@ We have built the lists encoding the data exchange patterns.

S. Filippone PSCToolkit dealii.X 44 /96

Sparse Matrix Allocation

In the same way, we allocate a sparse matrix object through:
call psb_spall(a,desc_a [, nnz, dupl, bldmodel])
or, in the C interface,
info = psb ¢ dspall(a, desc_a);
Note:
@ The matrix A enters the BUILD state;

o If an estimate nnz of the final number of nonzeros (on the current process P) is available,
it speeds up the build phase.

S. Filippone PSCToolkit dealii.X

Sparse Matrix Allocation

In the same way, we allocate a sparse matrix object through:

call psb_spall(a,desc_a [, nnz, dupl, bldmodel])
or, in the C interface,

info = psb ¢ dspall(a, desc_a);

Note:

@ Since version 3.8.0 you can specify bldmode=psb_matbld_remote_, i.e. you can track
contributions generated on one process, but whose destination is another process;

@ The dupl argument handles duplicates; since 3.7 the default is psb_dupl_add_,
consistent with common finite-element practice;

S. Filippone PSCToolkit dealii.X 45 / 96

Sparse Matrix Allocation

In the same way, we allocate a sparse matrix object through:

call psb_spall(a,desc_a [, nnz, dupl, bldmodel)

do i=1, n

if (’this index belongs to me’) then

nz = ’number of entries in equation i’
ia(l:nz) = i
ja(l:nz) = ’list of neighbours of i’
val(l:nz) = ’coefficients Aij’
call psb_spins(nz,ia, ja,val,a,desc_a,info)
endif
enddo

Note that remote contributions generate an overhead, hence it you are able to generate locally
you'll go faster

S. Filippone PSCToolkit

dealii.X

Sparse Matrix Allocation - C Interface

In the same way, we allocate a sparse matrix object through:

info = psb ¢ dspall(a, desc_a);

for(int i = 0; i < n; i++){
if("this index belongs to me’){
nz = 'number of entries in equation i’
ia = 'vector of nz value i’
ja = "list of nz neighbours of i’
val = "coefficients Aij’
info = psb ¢ dspins(nz,ia,ja,val,a,desc a);
¥
¥

The procedures for the other data types are completely analogous.

S. Filippone PSCToolkit

dealii.X

46/ 96

IIE

Data Management

Note: the values contained in /A, JA are (usually) written in terms of the GLOBAL numbering.
As we go through k =1 : NZ on process P:

Q If IA(k) ¢ P then IA(k), JA(k) and VAL(k) are ignored (if psb_matbld_noremote_) or
stashed (if psb_matbld_remote_);

@ If IA(k) € P and JA(k) ¢ P then we have a communication requirement that has to be
coherent with DESC;

© There actually is no need to process (entire) row by (entire) row; the order may be arbitrary
(e.g.: all the coefficients associated with an element, coefficient by coefficient, etc).

@ It is convenient for performance to group a certain amount of data into a single function
call;

S. Filippone PSCToolkit dealii.X 47 / 96

Data Management

End of build stage:

call psb_spasb(a,desc_a,info [, afmt, upd, &
& mold])

or, in the C interface,

psb i t psb ¢ dspasb(psb c dspmat x*a,
psb ¢ descriptor xdesc_a);

After this call the sparse matrix enters the ASSEMBLED state.
Notes:

e With either AFMT or MOLD we may specify the desired internal storage format;

S. Filippone PSCToolkit dealii.X 48 / 96

Data Management

Same overall code structure with dense vectors

call psb_geall(x,desc,info)
do i=1, n

if (’this index belongs to me’) then

val = ’i-th term of X ’

call psb_geins(1,(/i/),(/val/),x,desc,info)

endif
enddo
call psb_geasb(x,desc,info)

The equivalent C interface code makes use of

psb i t psb c dgeall(psb ¢ dvector *x, psb c descriptor xdesc);
psb_i t psb ¢ dgeins(psb i t nz, const psb | t xirw,

const psb _d t xval, psb c dvector xx,

psb ¢ descriptor *desc);

psb i t psb ¢ dgeasb(psb ¢ dvector *x, psb ¢ descriptor xdesc);

S. Filippone PSCToolkit dealii.X 49 /96

Data Management

Rules of precedence:

@ A call to psb_cdall must precede any calls to either psb_spall or psb_geall using the
same descriptor

@ A call to psb_cdasb must precede any calls to either psb_spasb or psb_geasb using the
same descriptor

Note: Most routines in PSBLAS must be called synchronously by all processes participating in
a context; these include all the computational, allocation, and assembly routines.

The insertion routines psb_XXins are the main exception, as are called independently; a
subsequent call to psb_XXasb is required for synchronization.

S. Filippone PSCToolkit dealii.X 50 /96

|/O from File

For debug and testing purposes it is possible to read and write matrices/vectors to file

Harwell-Boeing the same file can (optionally) contains also the rhs

call hb_read(a, iret, iunit, filename, rhs, mtitle),

call hb_write(a, iret, iunit, filename, key , rhs , mtitle)
Matrix Market different functions for matrices and vectors

call mm_mat_read(a, iret, iunit, filename)

call mm_array_read(rhs, iret, iunit, filename)

call mm_mat_write(a, mtitle, iret, iunit, filename)

call mm_array_write(rhs, iret, iunit, filename)

where iret is always an integer error code, and iunit the Fortran file unit number.

S. Filippone PSCToolkit dealii.X

Table of Contents

@ PSBLAS

@ Preconditioned iterations
© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X

Preconditioned iterations

call psb_krylov(methd,a,prec,b,x,&
& eps,desc_a,info &
& [itmax, iter, err, itrace, &
& istop, irst])
Mandatory arguments:
methd “BiCGSTAB" (default), “BICG", “CGS", "RGMRES", “BiCGSTABL", “CG", "FCG";
a The sparse matrix (local part);
prec The preconditioner object;
b The RHS:
x The initial guess/final result;
eps The stopping tolerance;
desc a The communication descriptor;

info Error code.

S. Filippone PSCToolkit dealii.X

Preconditioned iterations

Optional arguments:
itmax Maximum number of iterations (default: 1000);
iter Actual number of iterations on output;
err Error estimate on output;
istop Stopping criterion:

[l

TR T LT €
EIEEREIS

1 Normwise backward error in the infinity norm (default):
2 2-Norm relative residual H%H <e€

itrace Print the current value of the error estimator every jtrace > 0 iterations; default
-1 (i.e. no message).

irst Restart parameter for RGMRES (default: 10) and BiCGSTAB(L) (default: 1).

S. Filippone PSCToolkit dealii.X

Preconditioned iterations - C Interfaces

The interfaces to the same routines are contained in the psb_krylov_cbind.h header, and are
available for the complex/real single and double precision types

int psb ¢ skrylov(const char xmethod, psb_c_sspmat *ah,
psb _c sprec xph, psb c svector xbh, psb c svector xxh,
psb ¢ descriptor *cdh, psb_c_ SolverOptions xopt);

int psb ¢ dkrylov(const char xmethod, psb c dspmat xah,
psb_c dprec *ph, psb c dvector xbh, psb c dvector xxh,
psb ¢ descriptor xcdh, psb ¢ SolverOptions xopt);

int psb ¢ ckrylov(const char xmethod, psb_ c_ cspmat *ah,
psb ¢ cprec xph, psb ¢ cvector xbh, psb c cvector xxh,
psb ¢ descriptor xcdh, psb_c_ SolverOptions xopt);

int psb ¢ zkrylov(const char xmethod, psb_c_zspmat *ah,
psb _c zprec xph, psb c zvector xbh, psb c zvector xxh,
psb ¢ descriptor *cdh, psb_c_ SolverOptions xopt);

S. Filippone PSCToolkit dealii.X 55 /96

Preconditioned iterations - C Interfaces

The solver options are contained into a structure

typedef struct psb_c_solveroptions {

int iter; /+* On exit how many iterations were performed x/
int itmax; /* On entry maximum number of iterations */
int itrace; /* On entry print an info message every itrace
iterations x/

int irst; /* Restart depth for RGMRES or BiCGSTAB(L) =/
int istop; /+ Stopping criterion: 1l:backward error

2: |[r]|_2/1bl]_2 */
double eps; /* Stopping tolerance x/
double err; /* Convergence indicator on exit %/

} psb_c_SolverOptions;

that can be initialized to the default values with the routine

int psb_c_ DefaultSolverOptions(psb_c_SolverOptions *opt);

S. Filippone PSCToolkit dealii.X 56 / 96

Preconditioners

Simple preconditioners:

type (psb_dprec_type) :: prec
call psb_precinit (prec,precname,info)
call psb_precbld(a,desc_a,prec,info)

NOPREC No preconditioning;
DIAG Scaling by a diagonal d(i) = 1/aj;
BJAC Block Jacobi with factorization ILU(0).

They are available, in the relevant types, as C interfaces in

psb_c dpreck psb_c new dprec();

psb i t psb ¢ dprecinit(psb_c_ ctxt ctxt, psb_c_dprec xph,
const char *ptype);

psb i t psb c dprecbld(psb_c_dspmat *ah,
psb ¢ descriptor xcdh, psb_c_ dprec xph);

all the prototypes can be included from psb_prec_cbind.h.

S. Filippone PSCToolkit

dealii.X

AMG4PSBLAS: Advanced Preconditioners

A package of preconditioners for PSBLAS in PSCToolkit:
@ Domain decomposition methods: block-Jacobi, Additive Schwarz;
@ Incomplete Factorizations and Approximate Inverses local solvers;

@ Algebraic Multigrid, with multiple variants, and various options for the coarse level solvers.

AMG4PSBLAS
Algebraic Multigrid Preconditioners For PSBLAS
Available from https://psctoolkit.github.io/products/amgdpsblas

version 1.2 to be released by year's end

S. Filippone PSCToolkit dealii.X

https://psctoolkit.github.io/products/amg4psblas

Scalable (optimal) preconditioners

o 1(B71A) = 1, being independent of n (algorithmic scalability)
o the action of B~! costs as little as possible, the best being O(n) flops (linear complexity)

@ in a massively parallel computer, B~! should be composed of easily applied local actions,
(implementation scalability, i.e., parallel execution time increases linearly with n)

S. Filippone PSCToolkit dealii.X 59 /96

Scalable (optimal) preconditioners

o 1(B71A) = 1, being independent of n (algorithmic scalability)
o the action of B~! costs as little as possible, the best being O(n) flops (linear complexity)

@ in a massively parallel computer, B~1 should be composed of easily applied local actions,
(implementation scalability, i.e., parallel execution time increases linearly with n)

MultiGrid (MG) Preconditioners

show optimal behaviour for many s.p.d. matrices,
e.g., matrices coming from scalar elliptic PDEs

(but optimal preconditioner is not necessarily the fastest preconditioner)

S. Filippone PSCToolkit dealii.X 59 /96

Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)

Algebraic MultiGrid methods do not explicitly use the problem geometry but rely only on matrix
entries to generate coarse-grids by using characterizations of algebraic smoothness

S. Filippone PSCToolkit dealii.X 60 / 96

Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)

Algebraic MultiGrid methods do not explicitly use the problem geometry but rely only on matrix
entries to generate coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices

error not reduced by the (chosen) smoother are called
algebraic smoothness:

(AW),' =r~0—= Wit1 = W;

S. Filippone PSCToolkit dealii.X 60 / 96

Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)

Algebraic MultiGrid methods do not explicitly use the problem geometry but rely only on matrix
entries to generate coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices

error not reduced by the (chosen) smoother are called
algebraic smoothness:

(AW),' =r~0—= Wit1 = W;

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and
well interpolated back w = (w;) € Range(P)

S. Filippone PSCToolkit dealii.X 60 / 96

Algebraic Multigrid Algorithms

Given Matrix A € R™" SPD

Wanted Iterative method B to precondition the
CG method:

@ Hierarchy of systems

A/X:b/, | = 0, ceey nlev
o Transfer operators:

P/ i RM1 5 R™

Missing Structural /geometric infos

Prolongator

M, : R™ — R™: “High frequencies” Pl , :R™M — RM+1: “Low frequencies”

1+1

Complementarity of Smoother and Prolongator

S. Filippone PSCToolkit dealii.X

Table of Contents

@ PSBLAS

© AMG4PSBLAS
o AMG Setup
© User's Interface

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X 62 /96

Algebraic MultiGrid (AMG) Setup

Recursive application of a two-grid scheme

@ setup of a convergent iterative solver M (the smoother)

@ setup of a coarse vector space R" from R"

@ build the prolongation P from A

@ compute coarse grid matrix A = PT AP

S. Filippone PSCToolkit dealii.X 63 /96

Algebraic MultiGrid (AMG) Setup

Recursive application of a two-grid scheme

@ setup of a convergent iterative solver M (the smoother)
@ setup of a coarse vector space R™ from R"
@ build the prolongation P from A

@ compute coarse grid matrix A = PT AP

AMG based on Aggregation of dofs

Group the dofs into disjoint sets of aggregates G;; each aggregate G; corresponds to 1 coarse dof
Associated prolongation:

e w; if i e GJ
PE= = { 0 otherwise

i=1....,n, j=1,..., nc,

or smoothed version of P (Vanék 1996)

o

SN

) = =

S. Filippone PSCToolkit dealii.X

63 /96

Parallel AMG Setup: decoupled aggregation

Given a user-defined threshold &

Repeat

= Pick a new root point not adjacent to any
existing aggregate

connected ng,,-‘zg fa* v 5 H

= Mark all points adjacent to the aggregate

Until all points are marked e o @
For all leftover points 1 @
L

[}
I
|
= Add neighbours which are strongly 1
I
|
1

= Add to an aggregated neighbour over !
threshold; if multiple ones, choose Tl
Jj: ak,j | i . .

= If no neighbour is above threshold, start ° embarraSSlng|y pal’a||e| but it may

a new aggregate produce non-uniform aggregates
Endfor

=

o generally it yields good results in
practice on scalar elliptic

problems (Tuminaro and Tong,
fourth order elliptic problems, Computing 56 (1996) 2000)

P. Vanék, J. Mandel and M. Brezina, Algebraic

multigrid by smoothed aggregation for second and

S. Filippone PSCToolkit 64 /96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V, €) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix A:
A ~ Qai’jW,'Wj
T =
@ a matching M is a set of pairwise non-adjacent edges,
containing no loops;

@ a maximum product matching if it maximizes the product of
the weights of the edges ej.,; in it.

S. Filippone PSCToolkit

I

P. D'Ambra, S. Filippone and P. S.
Vassilevski, BootCMatch: a software
package for bootstrap AMG based

) on graph weighted matching, ACM

Trans. Math. Software 44 (2018),
no. 4, Art. 39, 25 pp.

dealii.X 65 / 96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V,) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix A:
N oA _ 2a,"jW,'Wj
(A)I’J =dij=1 EJ,",'W,-2 A aj,jw.27
@ a matching M is a set of pairwise non-adjacent edges,
containing no loops;

@ a maximum product matching if it maximizes the product of
the weights of the edges ej.,; in it.

S. Filippone PSCToolkit

.
.
.
.-.'-.' .
.l...'..l-llll
R

oo ow

We divide the index set into
matched vertexes 7 = U721 Gj, with
Ging; =0 if i # j, and unmatched

vertexes, i.e., ns singletons G;.

dealii.X 65 /96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V,) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix A:

2ai’jW,'Wj

2

(Aj=a8,=1-—4"3 _
L 2;,i W} + 2j,jw]

@ a matching M is a set of pairwise non-adjacent edges,
containing no loops;

@ a maximum product matching if it maximizes the product of
the weights of the edges ej.,; in it.

4

S. Filippone PSCToolkit

e e il
o

To increase dimension
reduction we can perform more
than one sweep of matching
per step.

dealii.X 65 / 96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V,) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix A:
A ~ Qai’jW,'Wj
=3 i g
@ a matching M is a set of pairwise non-adjacent edges,
containing no loops;

@ a maximum product matching if it maximizes the product of
the weights of the edges ej.,; in it.

S. Filippone PSCToolkit

To increase regularity of P, we
can consider a smoothed
prolongator by applying a

Jacobi step.

dealii.X 65 / 96

Comparison of the Coarsening Strategy

VBM Decoupled aggregation

v
v

X

Embarrassingly parallel,

Good results with discretized scalar PDEs on a
limited number of cores,

May produce non-uniform aggregates,

Needs user inputted parameters for strength of
connection,

Issues with anisotropic problems.

S. Filippone

v

v

v

PSCToolkit

Matching-based aggregation

Independent of any heuristics or a priori
information on the near kernel of A,

Builds coarse matrices which are well-balanced
among parallel processes,

No need for special treatment of
process-boundary dofs,

Works with discretized system of PDEs with
arbitrary ordering,

May have problems with highly anisotropic
problems.

dealii.X 66 / 96

AMG4PSBLAS Software Architecture

n ‘ User interface }—)‘ Fortran C

3 f

_|

9 ‘ Multilevel data structures & related methods ‘

% A

g UMFPACK

= Smoothers data structures & related B SuperLU

methods; Interfaces to external packages - SuperLU Dist

4 MUMPS

%)

< Basic components (matrices, index

EZ% spaces, maps) & Related Methods

i

\ MPI \

S. Filippone PSCToolkit dealii.X 67 /96

Current version of AMG4PSBLAS preconditioners

setup phase: GPU implementation is work in progress (as far as possible)
@ decoupled smoothed aggregation
o parallel coupled matching-based aggregation
o distributed or replicated coarsest matrix

solve phase: GPU application implemented

@ cycles: V, W, K

@ smoothers: /;-Jacobi, hybrid (F/B) Gauss-Seidel, Chebychev polynomials,
block-Jacobi / additive Schwarz with LU, ILU factorizations or sparse
approximate inverses for the blocks

@ coarsest-matrix solvers: sparse LU, /;-Jacobi, hybrid (F/B) Gauss-Seidel,
block-Jacobi with LU, ILU factorizations or sparse approximate inverses of
the blocks, iterative PCG

o LU factorizations for smoothers & coarsest-level solvers: UMFPACK,
MUMPS, SuperLU, SuperLU Dist

S. Filippone PSCToolkit dealii.X 68 /96

User's interface for preconditioner setup

phkinit(contx,ptype,info): allocates and initializes the preconditioner p, according to
the preconditioner type chosen by the user

phset (what,val,info [,ilev, ilmax, pos, idx]): sets the parameters defining the
preconditioner p, i.e., the value contained in val is assigned to the parameter identified by
what

phhierarchy_build(a,desc_a,info): builds the hierarchy of matrices and
restriction/prolongation operators for the multilevel preconditioner p
plhsmoothers_build(a,desc_a,p,infol[,am,vm,im]): builds the smoothers and the
coarsest-level solvers for the multilevel preconditioner p

p%build(a,desc_a,infol,am,vm,im]): builds the preconditioner p (it is internally
implemented by invoking the two previous methods)

S. Filippone PSCToolkit dealii.X 69 /96

User's interface for preconditioner apply

o phapply(x,y,desc_a,info [,trans,work]): computes y = op(B~1)x, where B is a
previously built preconditioner, stored into p, and op denotes the preconditioner itself or its
transpose, according to the value of trans.
p%kapply is called within the PSBLAS method psb_krylov and hence it is completely
transparent to the user.

@ call plfree(p,info): deallocates the preconditioner data structure p

@ call pldescr(info, [iout]): prints a description of the preconditioner p

S. Filippone PSCToolkit dealii.X

Table of Contents

@ PSBLAS

© AMG4PSBLAS

© User's Interface
@ Example of use

@ Experiments on linear systems

S. Filippone PSCToolkit dealii.X 71/96

Parameter Setting for Preconditioner Setup

! build a V-cycle preconditioner with 1
! block-Jacobi sweep (with ILU(O) on the
! blocks) as pre- and post-smoother, and
! 8 block-Jacobi sweeps (with ILU(0)

! on the blocks) as coarsest solver

call PY%init(’ML’>,info)

call P%set (>SMOOTHER_TYPE’,’BJAC’,info)
call PY%set (’COARSE_SOLVE’,’BJAC’,info)
call P%set (’COARSE_SWEEPS’,8,info)

call Pjhierarchy_build(A,desc_A,info)
call PY%smoothers_build(A,desc_A,info)

S. Filippone PSCToolkit dealii.X 72 /96

Parameter Setting for Preconditioner Setup (cont'd)

! build a W-cycle preconditioner with 2
! hybrid Gauss-Seidel sweeps as pre- and
! post-smoother, a distributed coarsest
! matrix, and MUMPS as coarsest-level solver
call P%init(’ML’,info)

call P¥%set (’ML_CYCLE’,’WCYCLE’,info)
call PY%set (’>SMOOTHER_TYPE’,’FBGS’,info)
call P%set (>SMOOTHER_SWEEPS’,2,info)
call PY%set (’>COARSE_SOLVE’,’MUMPS’,info)
call P%set(’>COARSE_MAT’,’DIST’,info)
call Pjhierarchy_build(A,desc_A,info)
call PYsmoothers_build(A,desc_A,info)

S. Filippone PSCToolkit dealii.X 73 /96

Parameter Setting for Preconditioner Setup (cont'd)

! build a V-cycle preconditioner with the L1-Jacobi
! variant of a Chebychev Polynomial of degree 6

call
call
call
call
call
call
call
call
call
call
call
call
call

PY%init (°ML’,info)

Plset (?ML_CYCLE’,’VCYCLE’,info)

PY%set (°’SMOOTHER_TYPE’, POLY’ ,info)

Plset (’POLY_DEGREE’ ,6,info)

PY%set (?POLY_VARIANT’,’CHEB_4’,info)

Plset (’POLY_RHO_ESTIMATE’,’POLY_RHO_POWER’,info)
PY%set (’POLY_RHO_ESTIMATE_ITERATIONS’,20,info)
Plset (?SUB_SOLVE’,’L1-JACOBI’,info)

PY%set (?COARSE_MAT’,’DIST’,info)

Plset (?’COARSE_SOLVE’,’L1-JACOBI’,info)

Pl set (’COARSE_SWEEPS’,30,info)
P)hierarchy_build (A,desc_A,info)
Plismoothers_build (A,desc_A,info)

S. Filippone PSCToolkit dealii.X

74/ 96

How to play around

o If you want to test some of the library capabilities on your problem without jumping in and

implementing everything from scratch, then you can use in the test directory the
examples in the fileread folder to try it,

S. Filippone

PSCToolkit

dealii.X

How to play around

o If you want to test some of the library capabilities on your problem without jumping in and
implementing everything from scratch, then you can use in the test directory the
examples in the fileread folder to try it,

@ The test in pargen folder shows how the various part discussed here can be used to solve
for a second order equation in 3D with Dirichlet boundary conditions

_ag;” — "%?/22” — "’38‘;’22” + b1 2+ b2 y T bsaz +cu=f,
for (x,y,z) € [0,1]3,

u=g,
for (x,y,z) € 9]0, 1]3.

S. Filippone PSCToolkit dealii.X

Table of Contents

@ PSBLAS

© AMG4PSBLAS
© User's Interface

@ Use in dealii.X
@ Experiments on linear systems

S. Filippone PSCToolkit

dealii.X

Interfacing in dealii

The interface in dealii is to a large extent transparent to the user:
o Interfacing from dealii classes (just like PETSc);

o Interfacing through SUNDIALS /Kinsol:
o PSCToolkit can also be interfaced at a “lower” level:

o Basic operators;
o Preconditioner application (after setup);

= Therefore usable with the dealii native solvers.

S. Filippone PSCToolkit

dealii.X

7796

SUNDIALS

1

1 1
(__KINSOL

N
(__cvobE)

N
(__CVODES)

I
(__ARKODE)

(_ma) (C

IDAS)

*

o

J[

N N

VECTOR MODULES

MATRIX MODULES

SERIAL PARALLEL
(MPI)

OPENMP PTHREADS

PETSC

PARHYP
(HYPRE)

DENSE

BAND

SPARSE

CUDA

RAJA

MPI +
RAJA

MPI +
CUDA

OPENMP

el
I

LINEAR SOLVER MODULES
MATRIX BASED

(DENSE) (
[LAPACK j [LAPACK j
DENSE BAND

) (SUPERLU?M?

BAND)

(xuu

MATRIX-FREE

) (SPGMR)

(SPFGMR) (SPTFQMR)

(_ spBoc

PCG

PSCToolkit

NONLINEAR SOLVER MODULES

—NEWTON

FIXED
POINT

dealii.X

78/ 96

Table of Contents

@ PSBLAS

© AMG4PSBLAS
© User's Interface

@ Experiments on linear systems
@ Weak scalability on Leonardo

S. Filippone PSCToolkit dealii.X 79 /96

Weak Scaling on Leonardo

In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.

We use 8 x 108 unknowns per GPU, i.e., 3.2 x 107 unknowns per node.
use the following resources:

Number of GPUs from 1 to 8192,

GPUs x Node 4 (1 MPI Task x GPU, 8 CPUs per Task)

Pure MPI: 32 MPI Tasks per Node

Within the software framework:

<[> Compilers: gcc/11.3.0

<[> MPI: openmpi/4.1.4

</> CUDA compilation tools, release 11.8, V11.8.89

mmms

S. Filippone PSCToolkit dealii.X 80 /96

IIE

Algorithms

<[> Aggregation: VBM, Cycle: V, Smoother: ¢;-Jacobi, @
Coarse Solver: PCG + ¢1-Jacobi, @ o
<[> Aggregation: Smoothed Matching, Cycle: V, Smoother:
¢1-Jacobi, Coarse Solver: PCG + /¢1-Jacobi,
<[> Aggregation: Matching, Cycle: Variable V, Smoother:
¢1-Jacobi, Coarse Solver: PCG + ¢;1-Jacobi,
<[> Coarsening: Classical Algebraic Multigrid, Cycle: V,
Smoother: ¢1-Jacobi, Coarse Solver: ¢1-Jacobi, 40 sweeps NVIDIA/AMGX
Distributed multigrid linear solver library on GPU NVIDIA.

<[> Aggregation: (lterative) Parallel Graph Matching, Cycle: V,
Smoother: ¢;-Jacobi, Coarse Solver: ¢1-Jacobi, 40 sweeps

S. Filippone PSCToolkit dealii.X 81 /96

Operator Complexity

o> A first measure of the theoretical computational cost and of the memory footprint of
the different algorithms is given by the operator complexity:

“the total number of nonzeroes in

onC — 272‘6 nnz(A) __the linear operators on all grids di-
pc= nnz(A) " vided by the number of nonzeroes
in the fine grid operator”
Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching
32 1,584 1,93 1,143 4,49595 1,31887
64 1,587 1,93 1,143 450135 1,31914
128 1,588 1,936 1,143 4,49925 1,31421
256 1,687 1,905 1,144 4,49252 1,31314
512 1,589 1,937 1,143 4,4952 1,31329
1024 1,688 1,942 1,144 4,49503 1,31091
S. Filippone PSCToolkit dealii.X 82 /96

Algorithmic Scalability: Iteration Count

=@ VBMVCYCLE-HLG
=os VCYCLE-HLG
VUNSM-VCYC-HLG
mpem AMGX-AGGREGATI(
mem AMGX-CLASSICAL
wjj= VBMVCYCLE-MPI
e \/CYCLE-MPI
P VUNSM-VCYC-MPI

N SIS NSRS X @ O
v SR P SR P

Number of GPUs

S. Filippone PSCToolkit dealii.X 83 /96

10!

100

Implementation Scalability: Solve Time (s)

Number of GPUs

S. Filippone PSCToolkit

=@ VBMVCYCLE-HLG
=os VCYCLE-HLG
VUNSM-VCYC-HLG
mepm AMGX-AGGREGATI(
meem AMGX-CLASSICAL
wil= VBMVCYCLE-MPI
g \/CYCLE-MPI
P VUNSM-VCYC-MPI

dealii.X 84 /96

Implementation Scalability: Time X Iteration (s)

=@ VBMVCYCLE-HLG
=»s VCYCLE-HLG
VUNSM-VCYC-HLG
mepm AMGX-AGGREGATION
meem AMGX-CLASSICAL
wiil= VBMVCYCLE-MPI
g \/CYCLE-MPI
P \VUNSM-VCYC-MPI

ST P S I S S S S MR S N SRy
WA PR oY PSSP

Number of GPUs
Largest System Size is: 67121414144 ~ 7 x 10°.

S. Filippone PSCToolkit dealii.X

85 /96

3D Poisson Problem

Finite Differences discretization of N

~V2u=1, xelo0,1)3
u(x) =0, x€d[0,1]3.

2"t Data distribution:
o For PSCToolkit we use a block 3D Distribution,
o For AMGX we use the amgx_mpi_poisson7 tester.

#” Solver is Flexible Conjugate Gradient and CG for PSCToolkit and AMGX respectively,
tolerance 107°.

S. Filippone PSCToolkit dealii.X 86 /96

Weak Scaling on Leonardo

In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.

We use 8 x 108 unknowns per GPU, i.e., 3.2 x 107 unknowns per node.
use the following resources:

Number of GPUs from 1 to 8192,

GPUs x Node 4 (1 MPI Task x GPU, 8 CPUs per Task)

Pure MPI: 32 MPI Tasks per Node

Within the software framework:

<[> Compilers: gcc/11.3.0

<[> MPI: openmpi/4.1.4

</> CUDA compilation tools, release 11.8, V11.8.89

mmms

S. Filippone PSCToolkit dealii.X

Test case: Poisson equation

—Au =1 on unit cube, with DBC

Solver/preconditioner settings

o AMG as preconditioner of CG, stopped when ||r¥||2/||bll2 < 1077, or itmax = 500

VSMATCH V-cycle for matching-based coarsening with aggregates of max size 8,
smoothed prolongators

@ coarsest matrix size n. < 200np, with np number of tasks (GPUs)

@ /1-Jacobi iterations, quasi-opt. 4th-kind Cheb., approximate opt. 4th-kind Chebyshev and
quasi opt. 1st-kind Cheb. accelerations; 30 iterations of ¢1-Jacobi at the coarsest level.

Platform: Leonardo booster, ranked 6th in the last Top500 list (BullSequana XH2000, Xeon Platinum
8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband)

S. Filippone PSCToolkit dealii.X 88 /96

Results:Iterations for Solve

Pol. degree 4 (4 I11-Jac. sweeps) Pol. degree 8 (8 I1-Jac. sweeps)
[EEECheb. 4th 50 |/ EECheb. 4th
Bl Opt. Cheb. 4th [l Opt. Cheb. 4th
20 [[TICheb. 1st [[TICheb. 1st
I 1-Jac. 18 mlI1-Jac.
16
15 14
1] @212
=] o
k] s
© S 10
210 2
8
6
4
2
’ o
64 128 256 512 1024 64 128 256 512 1024
Number of GPUs Number of GPUs

89 /96

S. Filippone

Results: Time per Iteration

0.6 |-

o
o«

o
iN

Time per iteration (s)

o
w

Pol degree 44 I1-Jac. sweeps)

-Cheb 4th
Bl Opt. Cheb. 4th
[TICheb. 1st

Bl I1-Jac.

0.2
0.1
0 | !

64

128 256 512
Number of GPUs

1 024

o
©

I
©

o
3

0]

Time per iteration (s)
© O g
» (4] [0}

o
w

0.

N

0.

a

0

3
" [EiCheb. 1st |
Il 1-Jac.

4 128 256 512 1024
Number of GPUs

PoI degree 8 (8 I1-Jac. sweeps)

Results: Solve Time

Pol. degree 4 (4 I1-Jac. sweeps) Pol. degree 8 (8 I1-Jac. sweeps)
B Cheb. 4th 20 /mmCheb. 4th
16 | B Opt. Cheb. 4th Il Opt. Cheb. 4th
[ZICheb. 1st 18 ' |mmiCheb. 1st
14 | EMI1-Jac. W 1-Jac.
16 -
12 14+
<“ =
o 10 o 12
£ £
o 10+
28 2
A 3 8
6+
6
4
4 -
o (o}
128 256 512 1024 128 256 512 1024
Number of GPUs Number of GPUs

S. Filippone PSCToolkit

Table of Contents

@ PSBLAS

© AMG4PSBLAS

© User's Interface

@ Experiments on linear systems

@ Bibliograph

SA. Filippone PSCToolkit

dealii.X

References |

lain S. Duff, Michele Marrone, Giuseppe Radicati, and Carlo Vittoli. Level 3 basic linear algebra
subprograms for sparse matrices: a user-level interface. ACM Trans. Math. Software, 23(3):
379-401, 1997. ISSN 0098-3500. doi: 10.1145/275323.275327. URL
https://doi.org/10.1145/275323.275327.

L. Susan Blackford and et al. An updated set of basic linear algebra subprograms (BLAS).
ACM Trans. Math. Software, 28(2):135-151, 2002. ISSN 0098-3500. doi:
10.1145/567806.567807. URL https://doi.org/10.1145/567806.567807.

Salvatore Filippone and Michele Colajanni. PSBLAS: A library for parallel linear algebra
computation on sparse matrices. ACM Trans. Math. Software, 26(4):527-550, 2000.

Salvatore Filippone and Alfredo Buttari. Object-oriented techniques for sparse matrix
computations in Fortran 2003. ACM Trans. Math. Software, 38(4):23, 2012.

Valeria Cardellini, Salvatore Filippone, and Damian WI Rouson. Design patterns for
sparse-matrix computations on hybrid CPU/GPU platforms. Scientific Programming, 22(1):
1-19, 2014.

S. Filippone PSCToolkit dealii.X 93 /96

https://doi.org/10.1145/275323.275327
https://doi.org/10.1145/567806.567807

References |l

Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo. Sparse
matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw., 43(4):30:1-30:49,
January 2017. ISSN 0098-3500. doi: 10.1145/3017994. URL
http://doi.acm.org/10.1145/3017994.

Pasqua D'Ambra, Daniela di Serafino, and Salvatore Filippone. MLD2P4: a package of parallel
algebraic multilevel domain decomposition preconditioners in Fortran 95. ACM Trans. Math.
Software, 37(3):Art. 30, 23, 2010a. ISSN 0098-3500. doi: 10.1145/1824801.1824808. URL
https://doi.org/10.1145/1824801 . 1824808.

Pasqua D'Ambra, Fabio Durastante, and Salvatore Filippone. Parallel sparse computation
toolkit. Software Impacts, 15:100463, 2023. ISSN 2665-9638. doi:
https://doi.org/10.1016/j.simpa.2022.100463. URL
https://www.sciencedirect.com/science/article/pii/S2665963822001476.

S. Filippone PSCToolkit dealii.X 94 / 96

http://doi.acm.org/10.1145/3017994
https://doi.org/10.1145/1824801.1824808
https://www.sciencedirect.com/science/article/pii/S2665963822001476

References ||

Pasqua D'Ambra, Daniela di Serafino, and Salvatore Filippone. MLD2P4: a package of parallel
algebraic multilevel domain decomposition preconditioners in Fortran 95. ACM Trans. Math.
Software, 37(3):Art. 30, 23, 2010b. ISSN 0098-3500. doi: 10.1145/1824801.1824808. URL
https://doi.org/10.1145/1824801 . 1824808.

Pasqua D'Ambra, Fabio Durastante, and Salvatore Filippone. AMG preconditioners for linear
solvers towards extreme scale. SIAM Journal on Scientific Computing, 43(5):S679-S703,
2021. doi: 10.1137/20M134914X. URL https://doi.org/10.1137/20M134914X.

Pasqua D'Ambra, Fabio Durastante, Salvatore Filippone, and Ludmil Zikatanov. Automatic
coarsening in algebraic multigrid utilizing quality measures for matching-based aggregations.
Computers and Mathematics with Applications, 144:290-305, 2023. ISSN 0898-1221. doi:
https://doi.org/10.1016/j.camwa.2023.06.026. URL
https://www.sciencedirect.com/science/article/pii/S089812212300278X.

S. Filippone PSCToolkit dealii.X 95 / 96

https://doi.org/10.1145/1824801.1824808
https://doi.org/10.1137/20M134914X
https://www.sciencedirect.com/science/article/pii/S089812212300278X

References |V

Daniele Bertaccini, Pasqua D'Ambra, Fabio Durastante, and Salvatore Filippone. Why
diffusion-based preconditioning of richards equation works: Spectral analysis and
computational experiments at very large scale. Numerical Linear Algebra with Applications,
31(1):e2523, 2024. doi: https://doi.org/10.1002/nla.2523. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2523.

Pasqua D'Ambra, Fabio Durastante, Salvatore Filippone, Stefano Massei, and Stephen
Thomas. Optimal polynomial smoothers for parallel AMG. Numerical Algorithms, 100(4):
1783-1812, Dec 2025. ISSN 1572-9265. doi: 10.1007/s11075-025-02117-6. URL
https://doi.org/10.1007/s11075-025-02117-6.

Herbert Owen, Oriol Lehmkuhl, Pasqua D'Ambra, Fabio Durastante, and Salvatore Filippone.
Alya toward exascale: algorithmic scalability using psctoolkit. The Journal of
Supercomputing, 80(10):13533-13556, Jul 2024. ISSN 1573-0484. doi:
10.1007/s11227-024-05989-y. URL https://doi.org/10.1007/s11227-024-05989-y.

S. Filippone PSCToolkit dealii.X 96 / 96

https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2523
https://doi.org/10.1007/s11075-025-02117-6
https://doi.org/10.1007/s11227-024-05989-y

	PSBLAS
	Parallel Environment
	Computational kernels
	Data Distribution
	Sparse matrices
	Data Management
	Preconditioned iterations

	AMG4PSBLAS
	AMG Setup

	User's Interface
	Example of use
	Use in dealii.X

	Experiments on linear systems
	Weak scalability on Leonardo
	Bibliography

	References

