
PSCToolkit
PSBLAS 3.9 & AMG4PSBLAS 1.2

Sparse Computation & Iterative Solvers for HPC

Salvatore Filippone — salvatore.filippone@uniroma2.it

Exascale Framework for Digital Twins of the Human Body

S. Filippone PSCToolkit dealii.X 1 / 96

PSCToolkit

S. Filippone PSCToolkit dealii.X 2 / 96

Collaborators, funding and acknowledgments

Pasqua D’Ambra,
Consiglio Nazionale delle Ricerche

Istituto per le Applicazioni del Calcolo
“M. Picone”

Fabio Durastante,
Università di Pisa

CNR
Istituto per le Applicazioni del Calcolo

“M. Picone”

Salvatore Filippone,
Università di Roma Tor Vergata

CNR — Istituto per le Applicazioni del
Calcolo “M. Picone”

Cranfield University (UK)
Lawrence Berkeley Lab

S. Filippone PSCToolkit dealii.X 2 / 96

The PSCToolkit Team

Main team:
Salvatore Filippone
Fabio Durastante
Pasqua D’Ambra

Contributors:

Marco Feder

Simone Staccone

Luca Pepè Sciarria

Soren Rasmussen

Zaak Beekman

Andrea Di Iorio

Daniela di Serafino

Theophane Loloum

Dimitri Walker

Davide Barbieri

Alessandro Fanfarillo

Alfredo Buttari

Ambra Abdullahi Hassan

Thomas Amestoy

Michele Martone

Michele Colajanni

Fabio Cerioni

Stefano Maiolatesi

Dario Pascucci
Available from https://psctoolkit.github.io/

S. Filippone PSCToolkit dealii.X 3 / 96

https://psctoolkit.github.io/

PSCToolkit: PSBLAS Parallel Sparse BLAS

Main features:
Designed for iterative solvers; but, support for mesh
handling;
Main application: differential problems;
Data allocation through graph partitioning;
Support for overlap;

Lots of previous work in standards for sparse and dense linear algebra (see Duff et al. [1997],
Blackford and et al. [2002]); described in Filippone and Colajanni [2000], Filippone and Buttari
[2012]; version 3.9.0 to be released by year’s end.
Available from https://psctoolkit.github.io/products/psblas
RPMs available for Fedora and CentOS; SPACK builds under development, will be available
with the next formal release.

S. Filippone PSCToolkit dealii.X 4 / 96

https://psctoolkit.github.io/products/psblas

Library Structure

MPI •

PSBLAS

Application

Serial
Sparse BLAS

Internal
interface

C
interface

Fortran
interface

autotools

./ configure \
--with -blas =... \
--prefix =...

make
make install

CMake

mkdir build
cd build
cmake ..
make; make install

S. Filippone PSCToolkit dealii.X 5 / 96

Why PSBLAS?

Sparse Matrices and Krylov methods
A matrix is sparse when there are so many zeros (nonzeros are typically O(n)) that it pays off
to take advantage of them in the computer representation. James Wilkinson

Methods of choice: Search for a solution by projection

xm ∈ Km(A, r0)
rm = b − Axm ⊥ Km(A, r0)

Km(A, r0) = Span{r0,Ar0,A2r0, . . . ,Am−1r0}
Krylov subspace (growing with iteration until xm is good enough)

Conjugate Gradient (CG) for s.p.d. matrices (1952). CG Convergence

∥ek∥A
∥e0∥A

≤ 2
(
a− 1
a+ 1

)
, a =

√
µ(A) = λmax/λmin

ek = x − xk error at iteration k , λ eigenvalue of A

S. Filippone PSCToolkit dealii.X 6 / 96

Why PSBLAS?

Sparse Matrices and Krylov methods
A matrix is sparse when there are so many zeros (nonzeros are typically O(n)) that it pays off
to take advantage of them in the computer representation. James Wilkinson

Methods of choice: Search for a solution by projection

xm ∈ Km(A, r0)
rm = b − Axm ⊥ Km(A, r0)

Km(A, r0) = Span{r0,Ar0,A2r0, . . . ,Am−1r0}
Krylov subspace (growing with iteration until xm is good enough)

Conjugate Gradient (CG) for s.p.d. matrices (1952). CG Convergence

∥ek∥A
∥e0∥A

≤ 2
(
a− 1
a+ 1

)
, a =

√
µ(A) = λmax/λmin

ek = x − xk error at iteration k , λ eigenvalue of A

S. Filippone PSCToolkit dealii.X 6 / 96

Why PSBLAS?

Sparse Matrices and Krylov methods
A matrix is sparse when there are so many zeros (nonzeros are typically O(n)) that it pays off
to take advantage of them in the computer representation. James Wilkinson

Methods of choice: Search for a solution by projection

xm ∈ Km(A, r0)
rm = b − Axm ⊥ Km(A, r0)

Km(A, r0) = Span{r0,Ar0,A2r0, . . . ,Am−1r0}
Krylov subspace (growing with iteration until xm is good enough)

Conjugate Gradient (CG) for s.p.d. matrices (1952). CG Convergence

∥ek∥A
∥e0∥A

≤ 2
(
a− 1
a+ 1

)
, a =

√
µ(A) = λmax/λmin

ek = x − xk error at iteration k , λ eigenvalue of A

S. Filippone PSCToolkit dealii.X 6 / 96

An example Conjugate Gradient method
Compute r (0) = b − Ax(0) call psb_geaxpby(one,b,zero,r,desc_a,info)

rho = zero
for i = 1, 2, . . . iterate: do it = 1, itmax

solve Mz(i−1) = r (i−1) call psb_spsm(one,L,r,zero,w,desc_a,info)
call psb_spsm(one,U,w,zero,z,desc_a,info)

ρi−1 = r (i−1)T z(i−1) rho_old = rho; rho = psb_gedot(r,z,desc_a,info)
if i = 1 if (it == 1) then

p(1) = z(0) call psb_geaxpby(one,z,zero,p,desc_a,info)
else else

βi−1 = ρi−1/ρi−2 beta = rho/rho_old
p(i) = z(i−1) + βi−1p

(i−1) call psb_geaxpby(one,z,beta,p,desc_a,info)
endif endif
q(i) = Ap(i) call psb_spmm(one,A,p,zero,q,desc_a,info)
αi = ρi−1/p

(i)T q(i) sigma = psb_gedot(p,q,desc_a,info); alpha = rho/sigma
x(i) = x(i−1) + αip

(i) call psb_geaxpby(alpha,p,one,x,desc_a,info)
r (i) = r (i−1) − αiq

(i) call psb_geaxpby(-alpha,q,one,r,desc_a,info)
Check convergence: ∥r (i)∥2 ≤ ϵ∥b∥2 rn2 = psb_genrm2(r,desc_a,info)

bn2 = psb_genrm2(b,desc_a,info)
err = rn2/bn2
if (err.lt.eps) exit iterate

end enddo iterate

S. Filippone PSCToolkit dealii.X 7 / 96

Preconditioning

Solve the system B−1Ax = B−1b,
with matrix B ≈ A−1 (left
preconditioner) such that:

µ(B−1A) << µ(A)

Solving 2D Poisson eq.
(2500 dofs, µ(A) ≈ 1.5 × 103)

IC(0): B = LLT with L incompl. Cholesky factor,
µ(B−1A) ≈ 2.2 × 102

S. Filippone PSCToolkit dealii.X 8 / 96

PSBLAS Contents

Parallel Environment handling;
Computational kernels:

Sparse matrix by dense vector product;
Sparse triangular systems solution;
Vector and matrix norm;
Dense vector sums;
Dot products;

Data exchange and update;
Data Management;
Preconditioner setup;
Iterative solvers

S. Filippone PSCToolkit dealii.X 9 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 10 / 96

Parallel Environment

We defined our parallel environment:
Implemented in pure MPI;
Subset of MPI communication modes;
MPI directly available when/if needed;
Fortran generic interfaces available (no type mismatch!)

Basic operations:
Initialize/close a process grid (parallel machine environment handling)
Point-to-point send/receive
Collective operations: Broadcasts, Reductions, Scan-sum;

S. Filippone PSCToolkit dealii.X 11 / 96

Parallel Environment

Each context (MPI communicator) identifies a virtual parallel machine:

call psb_init(ctxt [, np, basectxt , ids])
call psb_info(ctxt ,iam ,np)
call psb_exit(ctxt [, close=.true .])

Rules:
psb_init must be called before anything else;
Creates a new communicator: the library communication is cleanly separated from the
application;
It is legal to specify a (permuted) subset of the available processes;

MPI interoperability

mpicomm = psb_get_mpi_comm(ctxt)
mpirank = psb_get_mpi_rank(ctxt , id)

S. Filippone PSCToolkit dealii.X 12 / 96

Parallel Environment: Hello World!

Writing
helloworld.f90:

program he l l o_wor l d
use psb_base_mod
i m p l i c i t none
type (psb_ctxt_type) : : c t x t
i n t e g e r (psb_ipk_) : : iam , np
c h a r a c t e r (l e n =20) : : name
c a l l p s b_ in i t (c t x t)
c a l l psb_info (c tx t , iam , np)
name=’ h e l l ow o r l d ’
i f (iam == psb_root_) then

w r i t e (∗ , ∗) ’Welcome to PSBLAS v e r s i o n : ’ , p sb_ver s ion_st r ing_
w r i t e (∗ , ∗) ’ Th i s i s the ’ , t r im (name) , ’ sample program ’
w r i t e (∗ , ∗) ’ I am p r o c e s s ’ , iam , ’ o f ’ , np

e l s e
w r i t e (∗ , ∗) ’ I am p r o c e s s ’ , iam , ’ o f ’ , np

end i f
c a l l p sb_ex i t (c t x t)
s top

end program he l l o_wor l d
S. Filippone PSCToolkit dealii.X 13 / 96

The C Interface

The PSBLAS library comes with a C interface.
The general rule for switching between the Fortran and C variants of the same PSBLAS routine
is

call psb_<something>(...) 7→ psb_c_[PRECISION]<something>(...);

The routines defining the parallel environment are now:

psb_i_t psb_c_init ();
void psb_c_info(psb_i_t ctxt , \

psb_i_t *iam , psb_i_t *np);
void psb_c_exit(psb_i_t ctxt);

The headers for these routines are in the psb_base_cbind.h file.

S. Filippone PSCToolkit dealii.X 14 / 96

The C version of the Hello World!
#i n c l u d e <s t d i o . h>
#i n c l u d e <s t d l i b . h>
#i n c l u d e <s t r i n g . h>
#i n c l u d e <math . h>
#i n c l u d e "psb_base_cbind . h"
i n t main (i n t argc , cha r ∗ a rgv [])
{

i n t c t x t , iam , np ;
cha r name []= " c_he l l owo r l d " ;

c t x t = psb_c_in i t () ;
psb_c_info (c t x t ,&iam ,&np) ;

i f (iam == 0) {
p r i n t f ("Thi s i s the %s sample program\n" , name) ;
p r i n t f (" I am p r o c e s s %d o f %d\n" , iam , np) ;

} e l s e {
p r i n t f (" I am p r o c e s s %d o f %d\n" , iam , np) ;

}

psb_c_exit (c t x t) ;
}

S. Filippone PSCToolkit dealii.X 15 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 16 / 96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

(Parallel) Sparse matrix by Vector product;

a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp




A : n rows p columns

b1

b2

...

bp




c1

c2

...

cn





a 2
1
×
b 1

a 2
2
×
b 2

a 2
p
×
b p

+

+ . . .+

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 17 / 96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

(Parallel) Sparse matrix by Vector product;
Sparse triangular system solution;

Dot products;
Vector norms;
Matrix norms;
Scaled sums (AXPY-like);

0 2 4 6 8 10

nz = 22

0

1

2

3

4

5

6

7

8

9

10

11

1

2

3

4

5

6

7

8

9

10

Note: we also need boundary data exchange and mesh management.
S. Filippone PSCToolkit dealii.X 18 / 96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

(Parallel) Sparse matrix by Vector product;
Sparse triangular system solution;
Dot products;

Vector norms;
Matrix norms;
Scaled sums (AXPY-like);

< x, y >=
n∑

i=1

xiyi

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 / 96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

(Parallel) Sparse matrix by Vector product;
Sparse triangular system solution;
Dot products;
Vector norms;

Matrix norms;
Scaled sums (AXPY-like);

∥x∥1 =
∑
i

|xi |

∥x∥2 =

(∑
i

|xi |2
) 1

2

∥x∥∞ = max
i

|xi |

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 / 96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

(Parallel) Sparse matrix by Vector product;
Sparse triangular system solution;
Dot products;
Vector norms;
Matrix norms;

Scaled sums (AXPY-like);

∥A∥1 = max
j

∑
i

|ai ,j |

∥A∥∞ = max
i

∑
j

|ai ,j |

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 / 96

Computational kernels: a toolkit for iterative solvers

Necessary ingredients:

(Parallel) Sparse matrix by Vector product;
Sparse triangular system solution;
Dot products;
Vector norms;
Matrix norms;
Scaled sums (AXPY-like);

Note: we also need boundary data exchange and mesh management.

S. Filippone PSCToolkit dealii.X 18 / 96

Computational kernels

xT y (xHy): dot = psb_gedot(x,y,desc_a,info)

y← αx + βy: call psb_geaxpby(alpha,x,beta,y,desc_a,info)

maxi |xi |: amax = psb_geamax(x,desc_a,info)∑
i |xi |: asum = psb_geasum(x,desc_a,info)

∥x∥2: nrm2 = psb_genrm2(x,desc_a,info)

∥A∥∞ nrmi = psb_spnrmi(A,desc_a,info)

y← αAx + βy: call psb_spmm(alpha,A,x,beta,y,desc_a,info[,trans])

y← αDT−1x + βy: call psb_spsm(alpha,T,x,beta,y,desc_a,info[,trans,unitd])

Note: T is a triangular AND block diagonal matrix (i.e.: Block-Jacobi or Hybrid GS type preconditioners)

S. Filippone PSCToolkit dealii.X 19 / 96

Computational kernels

xT y (xHy): dot = psb_gedot(x,y,desc_a,info)

y← αx + βy: call psb_geaxpby(alpha,x,beta,y,desc_a,info)

maxi |xi |: amax = psb_geamax(x,desc_a,info)∑
i |xi |: asum = psb_geasum(x,desc_a,info)

∥x∥2: nrm2 = psb_genrm2(x,desc_a,info)

∥A∥∞ nrmi = psb_spnrmi(A,desc_a,info)

y← αAT x + βy: call psb_spmm(alpha,A,x,beta,y,desc_a,info,trans=’T’)

y← αDTT x + βy: call psb_spsm(alpha,T,x,beta,y,desc_a,info,trans=’T’[,unitd])

Note: T is a triangular AND block diagonal matrix (i.e.: Block-Jacobi or Hybrid GS type preconditioners)

S. Filippone PSCToolkit dealii.X 19 / 96

Computational kernels - C Interfaces

The routines are defined for each data type, e.g., in the double case

xT y: psb_d_t psb_c_dgedot(psb_c_dvector ∗x, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

y← αx + βy: psb_i_t psb_c_dgeaxpby(psb_d_t alpha, psb_c_dvector ∗x,
psb_d_t beta, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

maxi |xi |: psb_d_t psb_c_dgeamax(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);∑
i |xi |: psb_d_t psb_c_dgeasum(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);

∥x∥2: psb_d_t psb_c_dgenrm2(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);

∥A∥∞ psb_d_t psb_c_dspnrmi(psb_c_dspmat ∗A, psb_c_descriptor ∗desc_a);

y← αAx + βy: psb_i_t psb_c_dspmm(psb_d_t alpha, psb_c_dspmat ∗A,
psb_c_dvector ∗x, psb_d_t beta, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

Note: The headers for these functions are in the file psb_c_dbase.h, psb_c_cbase.h, psb_c_sbase.h,
psb_c_zbase.h, they can be included all together by including psb_base_cbind.h.

S. Filippone PSCToolkit dealii.X 20 / 96

Computational kernels - C Interfaces

The routines are defined for each data type, e.g., in the double case

xT y: psb_d_t psb_c_dgedot(psb_c_dvector ∗x, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

y← αx + βy: psb_i_t psb_c_dgeaxpby(psb_d_t alpha, psb_c_dvector ∗x,
psb_d_t beta, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

maxi |xi |: psb_d_t psb_c_dgeamax(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);∑
i |xi |: psb_d_t psb_c_dgeasum(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);

∥x∥2: psb_d_t psb_c_dgenrm2(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);

∥A∥∞ psb_d_t psb_c_dspnrmi(psb_c_dspmat ∗A, psb_c_descriptor ∗desc_a);

y← αAT x + βy: psb_i_t psb_c_dspmm_opt(psb_d_t alpha,
psb_c_dspmat ∗A, psb_c_dvector ∗x, psb_d_t beta, psb_c_dvector ∗y,
psb_c_descriptor ∗desc_a, char ∗trans, bool doswap);

Note: The headers for these functions are in the file psb_c_dbase.h, psb_c_cbase.h, psb_c_sbase.h,
psb_c_zbase.h, they can be included all together by including psb_base_cbind.h.

S. Filippone PSCToolkit dealii.X 20 / 96

Computational kernels - C Interfaces

The routines are defined for each data type, e.g., in the double case

xT y: psb_d_t psb_c_dgedot(psb_c_dvector ∗x, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

y← αx + βy: psb_i_t psb_c_dgeaxpby(psb_d_t alpha, psb_c_dvector ∗x,
psb_d_t beta, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

maxi |xi |: psb_d_t psb_c_dgeamax(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);∑
i |xi |: psb_d_t psb_c_dgeasum(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);

∥x∥2: psb_d_t psb_c_dgenrm2(psb_c_dvector ∗x, psb_c_descriptor ∗desc_a);

∥A∥∞ psb_d_t psb_c_dspnrmi(psb_c_dspmat ∗A, psb_c_descriptor ∗desc_a);

y← αDT−1x + βy: psb_c_dspsm(psb_d_t alpha, psb_c_dspmat ∗T,
psb_c_dvector ∗x, psb_d_t beta, psb_c_dvector ∗y, psb_c_descriptor ∗desc_a);

Note: The headers for these functions are in the file psb_c_dbase.h, psb_c_cbase.h, psb_c_sbase.h,
psb_c_zbase.h, they can be included all together by including psb_base_cbind.h.

S. Filippone PSCToolkit dealii.X 20 / 96

An example Conjugate Gradient method
Template CG PSBLAS Implementation
Compute r (0) = b − Ax(0) call psb_geaxpby(one,b,zero,r,desc_a,info)

rho = zero
for i = 1, 2, . . . iterate: do it = 1, itmax

solve Mz(i−1) = r (i−1) call psb_spsm(one,L,r,zero,w,desc_a,info)
call psb_spsm(one,U,w,zero,z,desc_a,info)

ρi−1 = r (i−1)T z(i−1) rho_old = rho
rho = psb_gedot(r,z,desc_a,info)

if i = 1 if (it == 1) then
p(1) = z(0) call psb_geaxpby(one,z,zero,p,desc_a,info)

else else
βi−1 = ρi−1/ρi−2 beta = rho/rho_old
p(i) = z(i−1) +βi−1p

(i−1) call psb_geaxpby(one,z,beta,p,desc_a,info)
endif endif
q(i) = Ap(i) call psb_spmm(one,A,p,zero,q,desc_a,info)

αi = ρi−1/p
(i)T q(i) sigma = psb_gedot(p,q,desc_a,info)

alpha = rho/sigma
x(i) = x(i−1) + αi p

(i) call psb_geaxpby(alpha,p,one,x,desc_a,info)
r (i) = r (i−1) − αi q

(i) call psb_geaxpby(-alpha,q,one,r,desc_a,info)
Check convergence:
∥r (i)∥2 ≤ ϵ∥b∥2 rn2 = psb_genrm2(r,desc_a,info)

bn2 = psb_genrm2(b,desc_a,info)
err = rn2/bn2
if (err.lt.eps) exit iterate

end enddo iterate

Exercise: write the corresponding C version for double vectors and matrices
S. Filippone PSCToolkit dealii.X 21 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 22 / 96

Data Distribution

Guiding principle: “Owner computes” paradigm. Given an index space 1 . . .N (and vectors
defined on this index space):

1 The index space is partitioned among processes;

2 Each index has a “home” process;

3 The “home” process holds the authoritative value of the corresponding vector entry;

4 The “home” process performs the arithmetic operations needed to set the value of a vector entry;

5 On each process, the set of “resident” indices will have a local numbering;

6 There is a map between global and local indices; the map is (usually) one-to-one when restricted
to “home” processes;

7 There is a certain amount of redundancy due to “halo” indices (see below)

S. Filippone PSCToolkit dealii.X 23 / 96

Data Distribution

0 500 1000 1500 2000 2500 3000

nz = 10193

0

500

1000

1500

2000

2500

3000

Mesh partition ⇔ Graph partition ⇔ Matrix row partition

Finding the optimal decomposition is equivalent to a graph partition problem (NP-complete).

S. Filippone PSCToolkit dealii.X 24 / 96

Data Distribution
Isomorphism between sparse matrix (pattern) and a graph: G = {V ,E} where

V = {v1, . . . , vn}
E ⊆ V × V

From a sparse matrix to a graph:
To each row i there corresponds a vertex vi ;
To each coefficient aij there corresponds an edge
(vi , vj);

From a graph to a sparse matrix (pattern): same as
above.

⇕

0 500 1000 1500 2000 2500 3000

nz = 10193

0

500

1000

1500

2000

2500

3000

Note: numbering of vertices induces a different pattern (symmetric permutation)
S. Filippone PSCToolkit dealii.X 25 / 96

Communication descriptors

What is a communication descriptor?
An opaque object that:

Keeps track of the parallel machine (ctxt);
Is associated with a discretization topology (mesh graph plus discretization stencil);
Stores the mapping of the index space onto the parallel machine;
Contains all the data necessary to implement a neighbour-to-neighbour data exchange (or:
halo data exchange; or: ghost cell update; or: persistent neighborhood all-to-all on a
virtual distributed graph topology)

call psb_halo(x,desc)

S. Filippone PSCToolkit dealii.X 26 / 96

Communication descriptors

What is a communication descriptor?
An opaque object that:

Keeps track of the parallel machine (ctxt);
Is associated with a discretization topology (mesh graph plus discretization stencil);
Stores the mapping of the index space onto the parallel machine;
Contains all the data necessary to implement a neighbour-to-neighbour data exchange (or:
halo data exchange; or: ghost cell update; or: persistent neighborhood all-to-all on a
virtual distributed graph topology)

psb_i_t psb_c_dhalo(psb_c_dvector *x,
psb_c_descriptor *desc_a);

S. Filippone PSCToolkit dealii.X 26 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 27 / 96

Storage schemes

Coordinate storage:
M Rows;
N Columns;

NZ Non zeroes;
IA(1:NZ) Row indices;
JA(1:NZ) Column indices;
AS(1:NZ) Coefficients;

Note: by definition of number of rows we have 1 ≤ IA(i) ≤ M, likewise for the columns.

S. Filippone PSCToolkit dealii.X 28 / 96

Storage schemes
COO

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�Elements Array ...

3 3 ...

Col idx array 1 2 8 1 3 9 2 8 ...

Row idx array 1 1 1 2 2 2

do i=1,nz
ir = ia(i)
jc = ja(i)
y(ir) = y(ir) + as(i)*x(jc)

enddo

S. Filippone PSCToolkit dealii.X 29 / 96

Storage schemes

Compressed Storage by Rows:
M Rows;
N Columns;

IA(1:M+1) Pointers to row start;
JA(1:NZ) Column indices;
AS(1:NZ) Coefficients;

S. Filippone PSCToolkit dealii.X 30 / 96

Storage schemes

CSR
���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�
���
�
���
�
�������
�
���
�

Elements Array

Row pointer

Col idx array 1 2 8 1 3 9 2 8

...

...

1 4 7 10 14

do i=1,m
do j=ia(i), ia(i+1)-1
y(i) = y(i) + as(j)*x(ja(j))

enddo
enddo

S. Filippone PSCToolkit dealii.X 31 / 96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

Facts:
Different computer architectures are best exploited by different formats;
Different formats are suited to different operations (and we need them all);

Requirements (put your library developer’s hat on):
We want to be able to change in response to machine changes (might be done at compile
time);
We want to be able to change in response to use patterns (need to change at run time)
We want to switch among formats, some of them unkonwn at compile time;

Essentially, we want objects to switch between different types at runtime

S. Filippone PSCToolkit dealii.X 32 / 96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

Facts:
Different computer architectures are best exploited by different formats;
Different formats are suited to different operations (and we need them all);

Requirements (put your library developer’s hat on):
We want to be able to change in response to machine changes (might be done at compile
time);
We want to be able to change in response to use patterns (need to change at run time)
We want to switch among formats, some of them unkonwn at compile time;

Essentially, we want objects to switch between different types at runtime

S. Filippone PSCToolkit dealii.X 32 / 96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

Facts:
Different computer architectures are best exploited by different formats;
Different formats are suited to different operations (and we need them all);

Requirements (put your library developer’s hat on):
We want to be able to change in response to machine changes (might be done at compile
time);
We want to be able to change in response to use patterns (need to change at run time)
We want to switch among formats, some of them unkonwn at compile time;

Essentially, we want objects to switch between different types at runtime

S. Filippone PSCToolkit dealii.X 32 / 96

Are you unsure what to use?

Well, so are we (see also Filippone et al. [2017])

Facts:
Different computer architectures are best exploited by different formats;
Different formats are suited to different operations (and we need them all);

Requirements (put your library developer’s hat on):
We want to be able to change in response to machine changes (might be done at compile
time);
We want to be able to change in response to use patterns (need to change at run time)
We want to switch among formats, some of them unkonwn at compile time;

Essentially, we want objects to switch between different types at runtime

S. Filippone PSCToolkit dealii.X 32 / 96

Design Patterns to the Rescue

We want maximum freedom, flexibility, maintainability and performance
we like to have our cake and eat it too

⇒ Need to use Design Patterns
STATE;

BUILDER;

MEDIATOR;

PROTOTYPE.

For details see:
A. Buttari, S. Filippone, ACM TOMS, 2012
V. Cardellini, S. Filippone and D. Rouson, Scientific Programming, 2014

All problems in computer science can be solved by another level of indirection —
Butler Lampson

S. Filippone PSCToolkit dealii.X 33 / 96

We have also GPU support!

Our design allows us to manage data on GPUs in a
transparent way Cardellini et al. [2014], Filippone et al.
[2017]

S. Filippone PSCToolkit dealii.X 34 / 96

SpMV performance

S. Filippone PSCToolkit dealii.X 35 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 36 / 96

Data Management

How do we set up a descriptor/sparse matrix?

First step, we have to decide a distribution of the index space of our problem, and how we are
going to specify it:

1 Assign a process to each index;
2 Assign a list of indices to each process;
3 Assign a bunch of consecutive indices to each process;
4 Other;

S. Filippone PSCToolkit dealii.X 37 / 96

Data Management

How do we set up a descriptor/sparse matrix?
First step, we have to decide a distribution of the index space of our problem, and how we are
going to specify it:

1 Assign a process to each index;
2 Assign a list of indices to each process;
3 Assign a bunch of consecutive indices to each process;
4 Other;

This is done with the initialization routine psb_cdall

S. Filippone PSCToolkit dealii.X 37 / 96

Data Management

How do we set up a descriptor/sparse matrix?
First step, we have to decide a distribution of the index space of our problem, and how we are
going to specify it:

1 Assign a process to each index;
2 Assign a list of indices to each process;
3 Assign a bunch of consecutive indices to each process;
4 Other;

For the C interface, we have different allocation routines for the different styles:
psb_i_t psb_c_cdall_vg (psb_l_t ng , psb_i_t ∗vg ,

psb_c_ctxt c t x t , p sb_c_desc r ip to r ∗desc_a) ;
psb_i_t psb_c_cdal l_vl (psb_i_t n l , psb_l_t ∗ v l ,

psb_c_ctxt c t x t , p sb_c_desc r ip to r ∗desc_a) ;
psb_i_t psb_c_cdal l_nl (psb_i_t n l ,

psb_c_ctxt c tx t , p sb_c_desc r ip to r ∗desc_a) ;

S. Filippone PSCToolkit dealii.X 37 / 96

Descriptor Allocation

! Assign a process to each index , e.g. via
!(serial) Metis
if (iam == 0) then
call bld_mtpart (.)
call getv_mtpart(v)

endif
call psb_bcast(ctxt ,v,root =0)
call psb_cdall(ctxt ,desc ,info ,vg=v)

Global size: m = size(v)

Metis
Information on how to obtain and use Metis and its parallel version can be found at
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

S. Filippone PSCToolkit dealii.X 38 / 96

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Descriptor Allocation

! Assign a process to each index , e.g. via
!(serial) Metis
if (iam == 0) then
call bld_mtpart (.)
call getv_mtpart(v)

endif
call psb_bcast(ctxt ,v,root =0)
call psb_cdall(ctxt ,desc ,info ,vg=v)

Global size: m = size(v)
The corresponding C style allocation is obtained using

psb_i_t psb_c_cdall_vg (psb_l_t ng , psb_i_t ∗vg ,
psb_c_ctxt c t x t ,
p sb_c_desc r ip to r ∗desc_a) ;

S. Filippone PSCToolkit dealii.X 38 / 96

Descriptor Allocation

! Assign a bunch of contiguous indices to each process
call psb_cdall(ctxt ,desc ,info ,nl=nl)

There is NO requirement that the NLs be evenly distributed;
Global size: m = psb_sum(ctxt,nl)

S. Filippone PSCToolkit dealii.X 39 / 96

Descriptor Allocation

! Assign a bunch of contiguous indices to each process
call psb_cdall(ctxt ,desc ,info ,nl=nl)

There is NO requirement that the NLs be evenly distributed;
Global size: m = psb_sum(ctxt,nl)
The corresponding C style allocation is obtained using
psb_i_t psb_c_cdal l_nl (psb_i_t n l ,

psb_c_ctxt c t x t , p sb_c_desc r ip to r ∗desc_a) ;

S. Filippone PSCToolkit dealii.X 39 / 96

Descriptor Allocation

! Build a list of locally owned indices
do i=1,nl
vl(i) = get_ith_index (....)

end do
call psb_cdall(ctxt ,desc ,info ,vl=vl)

There is NO requirement for the indices to be contiguous, or even ordered.
Global size: m = psb_sum(ctxt,size(vl))

S. Filippone PSCToolkit dealii.X 39 / 96

Descriptor Allocation

! Build a list of locally owned indices
do i=1,nl
vl(i) = get_ith_index (....)

end do
call psb_cdall(ctxt ,desc ,info ,vl=vl)

There is NO requirement for the indices to be contiguous, or even ordered.
Global size: m = psb_sum(ctxt,size(vl))
The corresponding C style allocation is obtained using

psb_i_t psb_c_cdal l_vl (psb_i_t n l , psb_l_t ∗ v l ,
psb_c_ctxt c t x t , p sb_c_desc r ip to r ∗desc_a) ;

S. Filippone PSCToolkit dealii.X 39 / 96

Descriptor Allocation

! Build an arbitrary strategy
interface
subroutine parts(glob_index ,nrow ,np,pv,nv)
integer , intent (in) :: glob_index ,np,nrow
integer , intent (out) :: nv, pv(*)

end subroutine parts
end interface

call psb_cdall(ctxt ,desc ,info ,m=mg,parts=parts)

Here we may even assign an index to multiple processes (aka overlap)!
Global size: m = mg

S. Filippone PSCToolkit dealii.X 40 / 96

Descriptor Allocation

At the end of the call to psb_cdall the descriptor enters into the BUILD state.
Note: we have just specified (implicitly) a mapping between the GLOBAL numbering into a
LOCAL numbering (for the local subdomain)

I 7→ (P, J)

where
I is a global index 1 ≤ I ≤ M

P is a process index 0 ≤ P < NP

J is a local index 1 ≤ J ≤ NL

The mapping is complete (On each process P we can now answer whether I belongs here, and
we can retrieve the global I corresponding to local J)
BUT
there is no description (yet) of the connections/interactions among subdomains.

S. Filippone PSCToolkit dealii.X 41 / 96

Data Management

Second step, we have to describe the mesh topology. This may be done in two ways:
1 Explicitly, with a list of edges;
2 Implicitly, while building a sparse matrix (whose pattern is isomorphic to the graph).

This works as long as the descriptor stays in the BUILD state.

S. Filippone PSCToolkit dealii.X 42 / 96

Data Management - C Interface

The procedure with the C interface:

f o r (i n t i = 0 ; i < n ; i ++){
i f (’ t h i s i nd ex be l ong s to me ’){

nz = ’ number o f n e i ghbou r s o f i ’ ;
i a = ’ v e c t o r o f s i z e nz wi th a l l v a l u e s i ’ ;
j a = ’ l i s t o f the nz ne i ghbou r s o f i ’ ;
i n f o = psb_c_cdins (nz , i a , ja , desc_a) ;

}
}

S. Filippone PSCToolkit dealii.X 43 / 96

Data Management

End of build stage:

call psb_cdasb(desc ,info)

or, in the C interface,

i n f o = psb_c_cdasb (desc) ;

The descriptor has now entered the ASSEMBLED state, and may be used for actual data
exchanges.
What happened:

The mapping now identifies local and HALO indices;
We have built the lists encoding the data exchange patterns.

S. Filippone PSCToolkit dealii.X 44 / 96

Sparse Matrix Allocation

In the same way, we allocate a sparse matrix object through:

call psb_spall(a,desc_a [, nnz , dupl , bldmode])

or, in the C interface,

i n f o = psb_c_dspal l (a , desc_a) ;

Note:
The matrix A enters the BUILD state;
If an estimate nnz of the final number of nonzeros (on the current process P) is available,
it speeds up the build phase.

S. Filippone PSCToolkit dealii.X 45 / 96

Sparse Matrix Allocation

In the same way, we allocate a sparse matrix object through:

call psb_spall(a,desc_a [, nnz , dupl , bldmode])

or, in the C interface,

i n f o = psb_c_dspal l (a , desc_a) ;

Note:
Since version 3.8.0 you can specify bldmode=psb_matbld_remote_, i.e. you can track
contributions generated on one process, but whose destination is another process;
The dupl argument handles duplicates; since 3.7 the default is psb_dupl_add_,
consistent with common finite-element practice;

S. Filippone PSCToolkit dealii.X 45 / 96

Sparse Matrix Allocation

In the same way, we allocate a sparse matrix object through:

call psb_spall(a,desc_a [, nnz , dupl , bldmode])

do i=1, n
if (’this index belongs to me’) then
nz = ’number of entries in equation i’
ia(1:nz) = i
ja(1:nz) = ’list of neighbours of i’
val(1:nz) = ’coefficients Aij’
call psb_spins(nz,ia,ja,val ,a,desc_a ,info)

endif
enddo

Note that remote contributions generate an overhead, hence it you are able to generate locally
you’ll go faster

S. Filippone PSCToolkit dealii.X 45 / 96

Sparse Matrix Allocation - C Interface

In the same way, we allocate a sparse matrix object through:

i n f o = psb_c_dspal l (a , desc_a) ;

f o r (i n t i = 0 ; i < n ; i ++){
i f (’ t h i s i nd ex be l ong s to me ’){
nz = ’ number o f e n t r i e s i n equa t i on i ’
i a = ’ v e c t o r o f nz v a l u e i ’
j a = ’ l i s t o f nz ne i ghbou r s o f i ’
v a l = ’ c o e f f i c i e n t s A i j ’
i n f o = psb_c_dspins (nz , i a , ja , va l , a , desc_a) ;

}
}

The procedures for the other data types are completely analogous.

S. Filippone PSCToolkit dealii.X 46 / 96

Data Management

Note: the values contained in IA, JA are (usually) written in terms of the GLOBAL numbering.
As we go through k = 1 : NZ on process P :

1 If IA(k) /∈ P then IA(k), JA(k) and VAL(k) are ignored (if psb_matbld_noremote_) or
stashed (if psb_matbld_remote_);

2 If IA(k) ∈ P and JA(k) /∈ P then we have a communication requirement that has to be
coherent with DESC ;

3 There actually is no need to process (entire) row by (entire) row; the order may be arbitrary
(e.g.: all the coefficients associated with an element, coefficient by coefficient, etc).

4 It is convenient for performance to group a certain amount of data into a single function
call;

S. Filippone PSCToolkit dealii.X 47 / 96

Data Management

End of build stage:

call psb_spasb(a,desc_a ,info [, afmt , upd , &
& mold])

or, in the C interface,

psb_i_t psb_c_dspasb (psb_c_dspmat ∗a ,
psb_c_desc r ip to r ∗desc_a) ;

After this call the sparse matrix enters the ASSEMBLED state.
Notes:

With either AFMT or MOLD we may specify the desired internal storage format;

S. Filippone PSCToolkit dealii.X 48 / 96

Data Management

Same overall code structure with dense vectors

call psb_geall(x,desc ,info)
do i=1, n
if (’this index belongs to me’) then
val = ’i-th term of X ’
call psb_geins (1,(/i/),(/val/),x,desc ,info)

endif
enddo
call psb_geasb(x,desc ,info)

The equivalent C interface code makes use of
psb_i_t psb_c_dgeal l (psb_c_dvector ∗x , psb_c_desc r ip to r ∗ desc) ;
psb_i_t psb_c_dgeins (psb_i_t nz , con s t psb_l_t ∗ i rw ,

con s t psb_d_t ∗ va l , psb_c_dvector ∗x ,
psb_c_desc r ip to r ∗ desc) ;

psb_i_t psb_c_dgeasb (psb_c_dvector ∗x , psb_c_desc r ip to r ∗ desc) ;

S. Filippone PSCToolkit dealii.X 49 / 96

Data Management

Rules of precedence:
A call to psb_cdall must precede any calls to either psb_spall or psb_geall using the
same descriptor
A call to psb_cdasb must precede any calls to either psb_spasb or psb_geasb using the
same descriptor

Note: Most routines in PSBLAS must be called synchronously by all processes participating in
a context; these include all the computational, allocation, and assembly routines.
The insertion routines psb_XXins are the main exception, as are called independently; a
subsequent call to psb_XXasb is required for synchronization.

S. Filippone PSCToolkit dealii.X 50 / 96

I/O from File

For debug and testing purposes it is possible to read and write matrices/vectors to file
Harwell-Boeing the same file can (optionally) contains also the rhs

call hb_read(a, iret, iunit, filename, rhs, mtitle),
call hb_write(a, iret, iunit, filename, key , rhs , mtitle)

Matrix Market different functions for matrices and vectors
call mm_mat_read(a, iret, iunit, filename)
call mm_array_read(rhs, iret, iunit, filename)
call mm_mat_write(a, mtitle, iret, iunit, filename)
call mm_array_write(rhs, iret, iunit, filename)

where iret is always an integer error code, and iunit the Fortran file unit number.

S. Filippone PSCToolkit dealii.X 51 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 52 / 96

Preconditioned iterations

call psb_krylov(methd ,a,prec ,b,x,&
& eps ,desc_a ,info &
& [itmax , iter , err , itrace , &
& istop , irst])

Mandatory arguments:
methd “BiCGSTAB” (default), “BICG”, “CGS”, “RGMRES”, “BiCGSTABL”, “CG”, “FCG”;

a The sparse matrix (local part);
prec The preconditioner object;

b The RHS;
x The initial guess/final result;

eps The stopping tolerance;
desc_a The communication descriptor;

info Error code.
S. Filippone PSCToolkit dealii.X 53 / 96

Preconditioned iterations

Optional arguments:
itmax Maximum number of iterations (default: 1000);

iter Actual number of iterations on output;
err Error estimate on output;

istop Stopping criterion:
1 Normwise backward error in the infinity norm (default): ∥r∥

∥A∥∥x∥+∥b∥ < ϵ

2 2-Norm relative residual ∥r∥
∥b∥ < ϵ

itrace Print the current value of the error estimator every itrace > 0 iterations; default
-1 (i.e. no message).

irst Restart parameter for RGMRES (default: 10) and BiCGSTAB(L) (default: 1).

S. Filippone PSCToolkit dealii.X 54 / 96

Preconditioned iterations - C Interfaces

The interfaces to the same routines are contained in the psb_krylov_cbind.h header, and are
available for the complex/real single and double precision types
i n t psb_c_skry lov (con s t cha r ∗method , psb_c_sspmat ∗ah ,

psb_c_sprec ∗ph , psb_c_svector ∗bh , psb_c_svector ∗xh ,
psb_c_desc r ip to r ∗cdh , psb_c_SolverOpt ions ∗ opt) ;

i n t psb_c_dkrylov (con s t cha r ∗method , psb_c_dspmat ∗ah ,
psb_c_dprec ∗ph , psb_c_dvector ∗bh , psb_c_dvector ∗xh ,
psb_c_desc r ip to r ∗cdh , psb_c_SolverOpt ions ∗ opt) ;

i n t psb_c_ckry lov (con s t cha r ∗method , psb_c_cspmat ∗ah ,
psb_c_cprec ∗ph , psb_c_cvector ∗bh , psb_c_cvector ∗xh ,
psb_c_desc r ip to r ∗cdh , psb_c_SolverOpt ions ∗ opt) ;

i n t psb_c_zkry lov (con s t cha r ∗method , psb_c_zspmat ∗ah ,
psb_c_zprec ∗ph , psb_c_zvector ∗bh , psb_c_zvector ∗xh ,
psb_c_desc r ip to r ∗cdh , psb_c_SolverOpt ions ∗ opt) ;

S. Filippone PSCToolkit dealii.X 55 / 96

Preconditioned iterations - C Interfaces

The solver options are contained into a structure
t y p ed e f s t r u c t p sb_c_so l v e rop t i on s {
i n t i t e r ; /∗ On e x i t how many i t e r a t i o n s were per fo rmed ∗/
i n t i tmax ; /∗ On en t r y maximum number o f i t e r a t i o n s ∗/
i n t i t r a c e ; /∗ On en t r y p r i n t an i n f o message e v e r y i t r a c e

i t e r a t i o n s ∗/
i n t i r s t ; /∗ Re s t a r t depth f o r RGMRES or BiCGSTAB(L) ∗/
i n t i s t o p ; /∗ Stopp ing c r i t e r i o n : 1 : backward e r r o r

2 : | | r | | _2 / | | b | | _2 ∗/
doub l e eps ; /∗ Stopp ing t o l e r a n c e ∗/
doub l e e r r ; /∗ Convergence i n d i c a t o r on e x i t ∗/

} psb_c_SolverOpt ions ;

that can be initialized to the default values with the routine
i n t psb_c_Defau l tSo l ve rOpt ions (psb_c_SolverOpt ions ∗ opt) ;

S. Filippone PSCToolkit dealii.X 56 / 96

Preconditioners

Simple preconditioners:

type(psb_dprec_type) :: prec
call psb_precinit(prec ,precname ,info)
call psb_precbld(a,desc_a ,prec ,info)

NOPREC No preconditioning;
DIAG Scaling by a diagonal d(i) = 1/aii
BJAC Block Jacobi with factorization ILU(0).

They are available, in the relevant types, as C interfaces in

psb_c_dprec∗ psb_c_new_dprec () ;
psb_i_t psb_c_dprec in i t (psb_c_ctxt c t x t , psb_c_dprec ∗ph ,

con s t cha r ∗ ptype) ;
psb_i_t psb_c_dprecbld (psb_c_dspmat ∗ah ,

psb_c_desc r ip to r ∗cdh , psb_c_dprec ∗ph) ;

all the prototypes can be included from psb_prec_cbind.h.
S. Filippone PSCToolkit dealii.X 57 / 96

AMG4PSBLAS: Advanced Preconditioners

A package of preconditioners for PSBLAS in PSCToolkit:
Domain decomposition methods: block-Jacobi, Additive Schwarz;
Incomplete Factorizations and Approximate Inverses local solvers;
Algebraic Multigrid, with multiple variants, and various options for the coarse level solvers.

AMG4PSBLAS
Algebraic Multigrid Preconditioners For PSBLAS

Available from https://psctoolkit.github.io/products/amg4psblas

version 1.2 to be released by year’s end

S. Filippone PSCToolkit dealii.X 58 / 96

https://psctoolkit.github.io/products/amg4psblas

Scalable (optimal) preconditioners

µ(B−1A) ≈ 1, being independent of n (algorithmic scalability)
the action of B−1 costs as little as possible, the best being O(n) flops (linear complexity)
in a massively parallel computer, B−1 should be composed of easily applied local actions,
(implementation scalability, i.e., parallel execution time increases linearly with n)

MultiGrid (MG) Preconditioners
show optimal behaviour for many s.p.d. matrices,

e.g., matrices coming from scalar elliptic PDEs

(but optimal preconditioner is not necessarily the fastest preconditioner)

S. Filippone PSCToolkit dealii.X 59 / 96

Scalable (optimal) preconditioners

µ(B−1A) ≈ 1, being independent of n (algorithmic scalability)
the action of B−1 costs as little as possible, the best being O(n) flops (linear complexity)
in a massively parallel computer, B−1 should be composed of easily applied local actions,
(implementation scalability, i.e., parallel execution time increases linearly with n)

MultiGrid (MG) Preconditioners
show optimal behaviour for many s.p.d. matrices,

e.g., matrices coming from scalar elliptic PDEs

(but optimal preconditioner is not necessarily the fastest preconditioner)

S. Filippone PSCToolkit dealii.X 59 / 96

Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)
Algebraic MultiGrid methods do not explicitly use the problem geometry but rely only on matrix

entries to generate coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices
error not reduced by the (chosen) smoother are called

algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi) ∈ Range(P)

S. Filippone PSCToolkit dealii.X 60 / 96

Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)
Algebraic MultiGrid methods do not explicitly use the problem geometry but rely only on matrix

entries to generate coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices
error not reduced by the (chosen) smoother are called

algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi) ∈ Range(P)

S. Filippone PSCToolkit dealii.X 60 / 96

Algebraic MultiGrid (AMG) Methods

AMG (Brandt, McCormick and Ruge, 1984)
Algebraic MultiGrid methods do not explicitly use the problem geometry but rely only on matrix

entries to generate coarse-grids by using characterizations of algebraic smoothness

Key issue in effective AMG for general matrices
error not reduced by the (chosen) smoother are called

algebraic smoothness:

(Aw)i = ri ≈ 0 =⇒ wi+1 ≈ wi

effective AMG requires that algebraic smoothness is
well represented on the coarse grid and

well interpolated back w = (wi) ∈ Range(P)

S. Filippone PSCToolkit dealii.X 60 / 96

Algebraic Multigrid Algorithms

Given Matrix A ∈ Rn×n SPD
Wanted Iterative method B to precondition the

CG method:
Hierarchy of systems

Alx=bl , l = 0, . . . , nlev

Transfer operators:

P l
l+1 : Rnl+1 → Rnl

Missing Structural/geometric infos

Smoother
Ml : Rnl → Rnl : “High frequencies”

Prolongator
P l
l+1 : Rnl → Rnl+1 : “Low frequencies”

Complementarity of Smoother and Prolongator
S. Filippone PSCToolkit dealii.X 61 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 62 / 96

Algebraic MultiGrid (AMG) Setup
Recursive application of a two-grid scheme

setup of a convergent iterative solver M (the smoother)

setup of a coarse vector space Rnc from Rn

build the prolongation P from A

compute coarse grid matrix Ac = PTAP

AMG based on Aggregation of dofs
Group the dofs into disjoint sets of aggregates Gj ; each aggregate Gj corresponds to 1 coarse dof

Associated prolongation:

P := Pij =

{
wi if i ∈ Gj

0 otherwise

i = 1, . . . , n, j = 1, . . . , nc ,

or smoothed version of P (Vaněk 1996)

S. Filippone PSCToolkit dealii.X 63 / 96

Algebraic MultiGrid (AMG) Setup
Recursive application of a two-grid scheme

setup of a convergent iterative solver M (the smoother)

setup of a coarse vector space Rnc from Rn

build the prolongation P from A

compute coarse grid matrix Ac = PTAP

AMG based on Aggregation of dofs
Group the dofs into disjoint sets of aggregates Gj ; each aggregate Gj corresponds to 1 coarse dof

Associated prolongation:

P := Pij =

{
wi if i ∈ Gj

0 otherwise

i = 1, . . . , n, j = 1, . . . , nc ,

or smoothed version of P (Vaněk 1996)

S. Filippone PSCToolkit dealii.X 63 / 96

Parallel AMG Setup: decoupled aggregation

P. Vaněk, J. Mandel and M. Brezina, Algebraic

multigrid by smoothed aggregation for second and

fourth order elliptic problems, Computing 56 (1996)

embarrassingly parallel but it may
produce non-uniform aggregates
generally it yields good results in
practice on scalar elliptic
problems (Tuminaro and Tong,
2000)

S. Filippone PSCToolkit dealii.X 64 / 96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 −
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matching M is a set of pairwise non-adjacent edges,
containing no loops;
a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

P. D’Ambra, S. Filippone and P. S.
Vassilevski, BootCMatch: a software
package for bootstrap AMG based
on graph weighted matching, ACM
Trans. Math. Software 44 (2018),

no. 4, Art. 39, 25 pp.

S. Filippone PSCToolkit dealii.X 65 / 96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 −
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matching M is a set of pairwise non-adjacent edges,
containing no loops;
a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

We divide the index set into
matched vertexes I =

⋃np
i=1 Gi , with

Gi ∩ Gj = ∅ if i ̸= j , and unmatched
vertexes, i.e., ns singletons Gi .

S. Filippone PSCToolkit dealii.X 65 / 96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 −
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matching M is a set of pairwise non-adjacent edges,
containing no loops;
a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

To increase dimension
reduction we can perform more
than one sweep of matching

per step.

S. Filippone PSCToolkit dealii.X 65 / 96

Parallel AMG Setup: Matching based aggregation

AMG based on weighted graph matching

Given a graph G = (V, E) (with adjacency matrix A), and a
weight vector w we consider the weighted version of G obtained by
considering the weight matrix Â:

(Â)i ,j = âi ,j = 1 −
2ai ,jwiwj

ai ,iw2
i + aj ,jw2

j

,

a matching M is a set of pairwise non-adjacent edges,
containing no loops;
a maximum product matching if it maximizes the product of
the weights of the edges ei 7→j in it.

To increase regularity of Pl we
can consider a smoothed
prolongator by applying a

Jacobi step.

S. Filippone PSCToolkit dealii.X 65 / 96

Comparison of the Coarsening Strategy

VBM Decoupled aggregation
✓ Embarrassingly parallel,
✓ Good results with discretized scalar PDEs on a

limited number of cores,
p May produce non-uniform aggregates,
p Needs user inputted parameters for strength of

connection,
p Issues with anisotropic problems.

Matching-based aggregation
✓ Independent of any heuristics or a priori

information on the near kernel of A,
✓ Builds coarse matrices which are well-balanced

among parallel processes,
✓ No need for special treatment of

process-boundary dofs,
✓ Works with discretized system of PDEs with

arbitrary ordering,
p May have problems with highly anisotropic

problems.

S. Filippone PSCToolkit dealii.X 66 / 96

AMG4PSBLAS Software Architecture

User interface

Multilevel data structures & related methods

Smoothers data structures & related
methods; Interfaces to external packages

Basic components (matrices, index
spaces, maps) & Related Methods

UMFPACK
SuperLU

SuperLU_Dist
MUMPS

Fortran C

MPI

A
M

G
4P

SB
LA

S
P
SB

LA
S

S. Filippone PSCToolkit dealii.X 67 / 96

Current version of AMG4PSBLAS preconditioners

setup phase: GPU implementation is work in progress (as far as possible)
decoupled smoothed aggregation
parallel coupled matching-based aggregation
distributed or replicated coarsest matrix

solve phase: GPU application implemented
cycles: V, W, K
smoothers: l1-Jacobi, hybrid (F/B) Gauss-Seidel, Chebychev polynomials,
block-Jacobi / additive Schwarz with LU, ILU factorizations or sparse
approximate inverses for the blocks
coarsest-matrix solvers: sparse LU, l1-Jacobi, hybrid (F/B) Gauss-Seidel,
block-Jacobi with LU, ILU factorizations or sparse approximate inverses of
the blocks, iterative PCG
LU factorizations for smoothers & coarsest-level solvers: UMFPACK,
MUMPS, SuperLU, SuperLU_Dist

S. Filippone PSCToolkit dealii.X 68 / 96

User’s interface for preconditioner setup

p%init(contx,ptype,info): allocates and initializes the preconditioner p, according to
the preconditioner type chosen by the user
p%set(what,val,info [,ilev, ilmax, pos, idx]): sets the parameters defining the
preconditioner p, i.e., the value contained in val is assigned to the parameter identified by
what

p%hierarchy_build(a,desc_a,info): builds the hierarchy of matrices and
restriction/prolongation operators for the multilevel preconditioner p
p%smoothers_build(a,desc_a,p,info[,am,vm,im]): builds the smoothers and the
coarsest-level solvers for the multilevel preconditioner p
p%build(a,desc_a,info[,am,vm,im]): builds the preconditioner p (it is internally
implemented by invoking the two previous methods)

S. Filippone PSCToolkit dealii.X 69 / 96

User’s interface for preconditioner apply

p%apply(x,y,desc_a,info [,trans,work]): computes y = op(B−1) x , where B is a
previously built preconditioner, stored into p, and op denotes the preconditioner itself or its
transpose, according to the value of trans.
p%apply is called within the PSBLAS method psb_krylov and hence it is completely
transparent to the user.

call p%free(p,info): deallocates the preconditioner data structure p

call p%descr(info, [iout]): prints a description of the preconditioner p

S. Filippone PSCToolkit dealii.X 70 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 71 / 96

Parameter Setting for Preconditioner Setup

...
! build a V-cycle preconditioner with 1
! block -Jacobi sweep (with ILU(0) on the
! blocks) as pre - and post -smoother , and
! 8 block -Jacobi sweeps (with ILU (0)
! on the blocks) as coarsest solver
call P%init(’ML’,info)
call P%set(’SMOOTHER_TYPE ’,’BJAC’,info)
call P%set(’COARSE_SOLVE ’,’BJAC’,info)
call P%set(’COARSE_SWEEPS ’,8,info)
call P%hierarchy_build(A,desc_A ,info)
call P%smoothers_build(A,desc_A ,info)
...

S. Filippone PSCToolkit dealii.X 72 / 96

Parameter Setting for Preconditioner Setup (cont’d)

...
! build a W-cycle preconditioner with 2
! hybrid Gauss -Seidel sweeps as pre - and
! post -smoother , a distributed coarsest
! matrix , and MUMPS as coarsest -level solver
call P%init(’ML’,info)
call P%set(’ML_CYCLE ’,’WCYCLE ’,info)
call P%set(’SMOOTHER_TYPE ’,’FBGS’,info)
call P%set(’SMOOTHER_SWEEPS ’,2,info)
call P%set(’COARSE_SOLVE ’,’MUMPS’,info)
call P%set(’COARSE_MAT ’,’DIST’,info)
call P%hierarchy_build(A,desc_A ,info)
call P%smoothers_build(A,desc_A ,info)
...

S. Filippone PSCToolkit dealii.X 73 / 96

Parameter Setting for Preconditioner Setup (cont’d)
...
! build a V-cycle preconditioner with the L1 -Jacobi
! variant of a Chebychev Polynomial of degree 6
call P%init(’ML’,info)
call P%set(’ML_CYCLE ’,’VCYCLE ’,info)
call P%set(’SMOOTHER_TYPE ’,’POLY’,info)
call P%set(’POLY_DEGREE ’,6,info)
call P%set(’POLY_VARIANT ’,’CHEB_4 ’,info)
call P%set(’POLY_RHO_ESTIMATE ’,’POLY_RHO_POWER ’,info)
call P%set(’POLY_RHO_ESTIMATE_ITERATIONS ’,20,info)
call P%set(’SUB_SOLVE ’,’L1-JACOBI ’,info)
call P%set(’COARSE_MAT ’,’DIST’,info)
call P%set(’COARSE_SOLVE ’,’L1-JACOBI ’,info)
call P%set(’COARSE_SWEEPS ’,30,info)
call P%hierarchy_build(A,desc_A ,info)
call P%smoothers_build(A,desc_A ,info)
...

S. Filippone PSCToolkit dealii.X 74 / 96

How to play around

If you want to test some of the library capabilities on your problem without jumping in and
implementing everything from scratch, then you can use in the test directory the
examples in the fileread folder to try it,

The test in pargen folder shows how the various part discussed here can be used to solve
for a second order equation in 3D with Dirichlet boundary conditions

−a1∂2u
∂x2 − a2∂2u

∂y2 − a3∂2u
∂z2 + b1

∂u
∂x + b2

∂u
∂y + b3

∂u
∂z + cu = f ,

for (x , y , z) ∈ [0, 1]3,
u = g ,

for (x , y , z) ∈ ∂[0, 1]3.

S. Filippone PSCToolkit dealii.X 75 / 96

How to play around

If you want to test some of the library capabilities on your problem without jumping in and
implementing everything from scratch, then you can use in the test directory the
examples in the fileread folder to try it,
The test in pargen folder shows how the various part discussed here can be used to solve
for a second order equation in 3D with Dirichlet boundary conditions

−a1∂2u
∂x2 − a2∂2u

∂y2 − a3∂2u
∂z2 + b1

∂u
∂x + b2

∂u
∂y + b3

∂u
∂z + cu = f ,

for (x , y , z) ∈ [0, 1]3,
u = g ,

for (x , y , z) ∈ ∂[0, 1]3.

S. Filippone PSCToolkit dealii.X 75 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 76 / 96

Interfacing in dealii

The interface in dealii is to a large extent transparent to the user:
Interfacing from dealii classes (just like PETSc);
Interfacing through SUNDIALS/Kinsol:
PSCToolkit can also be interfaced at a “lower” level:

Basic operators;
Preconditioner application (after setup);

⇒ Therefore usable with the dealii native solvers.

S. Filippone PSCToolkit dealii.X 77 / 96

The SUNDIALS/KINSOL Software Framework

SUNDIALS

ARKODECVODESCVODE IDA IDAS KINSOL

SUNMATRIX APINVECTOR API SUNLINEARSOLVER API SUNNONLINEARSOLVER API

SERIAL PARALLEL
(MPI)

OPENMP PTHREADS

PARHYP
(HYPRE)

PETSC

CUDA RAJA

MPI +
CUDA

MPI +
RAJA

OPENMP PSBLAS

VECTOR MODULES

DENSE

BAND

SPARSE

PSBLAS

MATRIX MODULES

DENSE BAND

LAPACK
DENSE

LAPACK
BAND

KLU SUPERLU_MT

PSBLAS
AMG4PSBLAS

MATRIX BASED
LINEAR SOLVER MODULES

MATRIX-FREE

SPBCG SPGMR

SPFGMR SPTFQMR

PCG

NEWTON

FIXED
POINT

NONLINEAR SOLVER MODULES

S. Filippone PSCToolkit dealii.X 78 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 79 / 96

Weak Scaling on Leonardo

Í In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.

8 We use 8 × 106 unknowns per GPU, i.e., 3.2 × 107 unknowns per node.
We use the following resources:
á Number of GPUs from 1 to 8192,
á GPUs x Node 4 (1 MPI Task x GPU, 8 CPUs per Task)
á Pure MPI: 32 MPI Tasks per Node

Within the software framework:
Ð Compilers: gcc/11.3.0
Ð MPI: openmpi/4.1.4
Ð CUDA compilation tools, release 11.8, V11.8.89

S. Filippone PSCToolkit dealii.X 80 / 96

Algorithms

Ð Aggregation: VBM, Cycle: V, Smoother: ℓ1-Jacobi,
Coarse Solver: PCG + ℓ1-Jacobi,

Ð Aggregation: Smoothed Matching, Cycle: V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,

Ð Aggregation: Matching, Cycle: Variable V, Smoother:
ℓ1-Jacobi, Coarse Solver: PCG + ℓ1-Jacobi,

Ð Coarsening: Classical Algebraic Multigrid, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, 40 sweeps

Ð Aggregation: (Iterative) Parallel Graph Matching, Cycle: V,
Smoother: ℓ1-Jacobi, Coarse Solver: ℓ1-Jacobi, 40 sweeps

S. Filippone PSCToolkit dealii.X 81 / 96

Operator Complexity

Ì A first measure of the theoretical computational cost and of the memory footprint of
the different algorithms is given by the operator complexity:

opc =

∑nlev
l=0 nnz(Al)

nnz(A)
=

“the total number of nonzeroes in
the linear operators on all grids di-
vided by the number of nonzeroes
in the fine grid operator”

Computing VBM Matching Matching AMGX
Units Smoothed Unsmoothed Classical Matching

32 1,584 1,93 1,143 4,49595 1,31887
64 1,587 1,93 1,143 4,50135 1,31914
128 1,588 1,936 1,143 4,49925 1,31421
256 1,587 1,905 1,144 4,49252 1,31314
512 1,589 1,937 1,143 4,4952 1,31329
1024 1,588 1,942 1,144 4,49503 1,31091

S. Filippone PSCToolkit dealii.X 82 / 96

Algorithmic Scalability: Iteration Count

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

101

102

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

S. Filippone PSCToolkit dealii.X 83 / 96

Implementation Scalability: Solve Time (s)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

100

101

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

S. Filippone PSCToolkit dealii.X 84 / 96

Implementation Scalability: Time × Iteration (s)

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

10−1

100

Number of GPUs

VBMVCYCLE-HLG
VCYCLE-HLG
VUNSM-VCYC-HLG
AMGX-AGGREGATION
AMGX-CLASSICAL
VBMVCYCLE-MPI
VCYCLE-MPI
VUNSM-VCYC-MPI

Largest System Size is: 67121414144 ≈ 7× 1010.

S. Filippone PSCToolkit dealii.X 85 / 96

3D Poisson Problem

Finite Differences discretization of

{
−∇2u = 1, x ∈ [0, 1]3

u(x) = 0, x ∈ ∂[0, 1]3. 6ui,j,k

−ui,j,k−1

−ui,j,k+1

−ui+1,j,kui−1,j,k

−ui,j+1,k

−ui,j−1,k

K Data distribution:
For PSCToolkit we use a block 3D Distribution,
For AMGX we use the amgx_mpi_poisson7 tester.

Ø Solver is Flexible Conjugate Gradient and CG for PSCToolkit and AMGX respectively,
tolerance 10−6.

S. Filippone PSCToolkit dealii.X 86 / 96

Weak Scaling on Leonardo

Í In weak scaling, both the number of computing units and the problem size are
increased: constant workload per computing unit.

8 We use 8 × 106 unknowns per GPU, i.e., 3.2 × 107 unknowns per node.
We use the following resources:
á Number of GPUs from 1 to 8192,
á GPUs x Node 4 (1 MPI Task x GPU, 8 CPUs per Task)
á Pure MPI: 32 MPI Tasks per Node

Within the software framework:
Ð Compilers: gcc/11.3.0
Ð MPI: openmpi/4.1.4
Ð CUDA compilation tools, release 11.8, V11.8.89

S. Filippone PSCToolkit dealii.X 87 / 96

Test case: Poisson equation

−∆u = 1 on unit cube, with DBC

Solver/preconditioner settings

AMG as preconditioner of CG, stopped when ∥rk∥2/∥b∥2 ≤ 10−7, or itmax = 500
VSMATCH V-cycle for matching-based coarsening with aggregates of max size 8,

smoothed prolongators
coarsest matrix size nc ≤ 200np, with np number of tasks (GPUs)
ℓ1-Jacobi iterations, quasi-opt. 4th-kind Cheb., approximate opt. 4th-kind Chebyshev and
quasi opt. 1st-kind Cheb. accelerations; 30 iterations of ℓ1-Jacobi at the coarsest level.

Platform: Leonardo booster, ranked 6th in the last Top500 list (BullSequana XH2000, Xeon Platinum
8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband)

S. Filippone PSCToolkit dealii.X 88 / 96

Results:Iterations for Solve

S. Filippone PSCToolkit dealii.X 89 / 96

Results:Time per Iteration

S. Filippone PSCToolkit dealii.X 90 / 96

Results: Solve Time

S. Filippone PSCToolkit dealii.X 91 / 96

Table of Contents
1 PSBLAS

The Conjugate Gradient Method
Parallel Environment
Computational kernels

The Conjugate Gradient Method
Data Distribution
Sparse matrices
Data Management
Preconditioned iterations

2 AMG4PSBLAS
AMG Setup

3 User’s Interface
Example of use
Use in dealii.X

4 Experiments on linear systems
Weak scalability on Leonardo
Bibliography

S. Filippone PSCToolkit dealii.X 92 / 96

References I

Iain S. Duff, Michele Marrone, Giuseppe Radicati, and Carlo Vittoli. Level 3 basic linear algebra
subprograms for sparse matrices: a user-level interface. ACM Trans. Math. Software, 23(3):
379–401, 1997. ISSN 0098-3500. doi: 10.1145/275323.275327. URL
https://doi.org/10.1145/275323.275327.

L. Susan Blackford and et al. An updated set of basic linear algebra subprograms (BLAS).
ACM Trans. Math. Software, 28(2):135–151, 2002. ISSN 0098-3500. doi:
10.1145/567806.567807. URL https://doi.org/10.1145/567806.567807.

Salvatore Filippone and Michele Colajanni. PSBLAS: A library for parallel linear algebra
computation on sparse matrices. ACM Trans. Math. Software, 26(4):527–550, 2000.

Salvatore Filippone and Alfredo Buttari. Object-oriented techniques for sparse matrix
computations in Fortran 2003. ACM Trans. Math. Software, 38(4):23, 2012.

Valeria Cardellini, Salvatore Filippone, and Damian WI Rouson. Design patterns for
sparse-matrix computations on hybrid CPU/GPU platforms. Scientific Programming, 22(1):
1–19, 2014.

S. Filippone PSCToolkit dealii.X 93 / 96

https://doi.org/10.1145/275323.275327
https://doi.org/10.1145/567806.567807

References II

Salvatore Filippone, Valeria Cardellini, Davide Barbieri, and Alessandro Fanfarillo. Sparse
matrix-vector multiplication on GPGPUs. ACM Trans. Math. Softw., 43(4):30:1–30:49,
January 2017. ISSN 0098-3500. doi: 10.1145/3017994. URL
http://doi.acm.org/10.1145/3017994.

Pasqua D’Ambra, Daniela di Serafino, and Salvatore Filippone. MLD2P4: a package of parallel
algebraic multilevel domain decomposition preconditioners in Fortran 95. ACM Trans. Math.
Software, 37(3):Art. 30, 23, 2010a. ISSN 0098-3500. doi: 10.1145/1824801.1824808. URL
https://doi.org/10.1145/1824801.1824808.

Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. Parallel sparse computation
toolkit. Software Impacts, 15:100463, 2023. ISSN 2665-9638. doi:
https://doi.org/10.1016/j.simpa.2022.100463. URL
https://www.sciencedirect.com/science/article/pii/S2665963822001476.

S. Filippone PSCToolkit dealii.X 94 / 96

http://doi.acm.org/10.1145/3017994
https://doi.org/10.1145/1824801.1824808
https://www.sciencedirect.com/science/article/pii/S2665963822001476

References III

Pasqua D’Ambra, Daniela di Serafino, and Salvatore Filippone. MLD2P4: a package of parallel
algebraic multilevel domain decomposition preconditioners in Fortran 95. ACM Trans. Math.
Software, 37(3):Art. 30, 23, 2010b. ISSN 0098-3500. doi: 10.1145/1824801.1824808. URL
https://doi.org/10.1145/1824801.1824808.

Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. AMG preconditioners for linear
solvers towards extreme scale. SIAM Journal on Scientific Computing, 43(5):S679–S703,
2021. doi: 10.1137/20M134914X. URL https://doi.org/10.1137/20M134914X.

Pasqua D’Ambra, Fabio Durastante, Salvatore Filippone, and Ludmil Zikatanov. Automatic
coarsening in algebraic multigrid utilizing quality measures for matching-based aggregations.
Computers and Mathematics with Applications, 144:290–305, 2023. ISSN 0898-1221. doi:
https://doi.org/10.1016/j.camwa.2023.06.026. URL
https://www.sciencedirect.com/science/article/pii/S089812212300278X.

S. Filippone PSCToolkit dealii.X 95 / 96

https://doi.org/10.1145/1824801.1824808
https://doi.org/10.1137/20M134914X
https://www.sciencedirect.com/science/article/pii/S089812212300278X

References IV

Daniele Bertaccini, Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone. Why
diffusion-based preconditioning of richards equation works: Spectral analysis and
computational experiments at very large scale. Numerical Linear Algebra with Applications,
31(1):e2523, 2024. doi: https://doi.org/10.1002/nla.2523. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2523.

Pasqua D’Ambra, Fabio Durastante, Salvatore Filippone, Stefano Massei, and Stephen
Thomas. Optimal polynomial smoothers for parallel AMG. Numerical Algorithms, 100(4):
1783–1812, Dec 2025. ISSN 1572-9265. doi: 10.1007/s11075-025-02117-6. URL
https://doi.org/10.1007/s11075-025-02117-6.

Herbert Owen, Oriol Lehmkuhl, Pasqua D’Ambra, Fabio Durastante, and Salvatore Filippone.
Alya toward exascale: algorithmic scalability using psctoolkit. The Journal of
Supercomputing, 80(10):13533–13556, Jul 2024. ISSN 1573-0484. doi:
10.1007/s11227-024-05989-y. URL https://doi.org/10.1007/s11227-024-05989-y.

S. Filippone PSCToolkit dealii.X 96 / 96

https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.2523
https://doi.org/10.1007/s11075-025-02117-6
https://doi.org/10.1007/s11227-024-05989-y

	PSBLAS
	Parallel Environment
	Computational kernels
	Data Distribution
	Sparse matrices
	Data Management
	Preconditioned iterations

	AMG4PSBLAS
	AMG Setup

	User's Interface
	Example of use
	Use in dealii.X

	Experiments on linear systems
	Weak scalability on Leonardo
	Bibliography

	References

